JORGE CARILOS ARES GARCIA

ENGENHARIA DE REQUISITOS EM METODOS AGEIS DE
DESENVOLVIMENTO DE SOFTWARE

Monografia apresentada & Escola
Politécnica da Universidade de S&o Paulo
para conclusdo do Curso de
Especializagdo em Engenharia de
Software MBA-USP

Sao Paulo
2002

JORGE CARLOS ARES GARCIA

ENGENHARIA DE REQUISITOS EM METODOS AGEIS DE
DESENVOLVIMENTO DE SOFTWARE

Monografia apresentada a Escola
Politécnica da Universidade de Sdo Paulo
para conclusio do Curso de
Especializagao em Engenharia de
Software MBA-USP

Area de Concentragéo:
Engenharia de Software

Orientadora;
Prof2. Di*. Selma Shin Shimizu Melnikoff

Sdo Paulo
2002

“Facts do not cease to exist because they
are ignored...”
Aldous Huxley

RESUMO

O desenvolvimento de sistemas, em alguns setores de negécio, € encarado como um
diferencial competitivo sob o ponto de vista da velocidade e pela forma como o

sistema proporciona capilaridade ao negédcio.

Considerados como parte essencial do desenvolvimento, os métodos de Engenharia

de Requisitos sdo avaliados atualmente, na sua forma, conceito e aplicabilidade em

tal dominio.

A presente monografia aborda a Engenharia de Requisitos e seus processos sob a
perspectiva formal de suas defini¢cdes e os processos de elicitag8o de requisitos nos

Métodos Ageis que procuram cumprir as expectativas impostas de velocidade e

adaptabilidade.

ABSTRACT

System development in some business markets are seen as competitive differential

under the point of view of the speed and for the form as the system provides

capillarity to the business.

Considered essential part of the development, the methods of Requirements

Engineering are appraised now, in its form, concept and applicability in such domain.

The present work presents the Requirements Engineering and their processes under

the formal perspective of their definitions and the requirement elicitation processes in

Agile Methods which try to accomplish the imposed expectations of speed and
adaptability.

SUMARIO

LISTA DE FIGURAS
LISTA DE TABELAS
1 INTRODUGAOQ ...couooeecieteeeectee s ess i sissssanssessssssssessensessaseoresssassaesssssassssanssnsaass 1
1.1 Consideractes INICIAISccueeveriecirriecerririsrsressesssassssssssesssssasssssennaissasssasssosnsnss 1
D RO B SIS iz ebsvst rrmsnmrasies mtomamasnne it saate e sadneintssnssaansibsnasnasansassussess s sakasasrevsss 3
153 ADBAREBEMCIA cousasesreiussoanassstasnansastnsasnaassossadinesrissdosessrassnsonsansssssbianssasanasissdatoss 3
L ANISUHTABAT .. cecxvuvsinsvosiussasanessosionsolosss fones iiksoussmensteramtonnsatisiissesonsssianunsasonssns sastions 4
1.5 Estrutura da MONOGrafiaccccvcereriviniiiinmiininiesersiesieniesessssssesssnscessnsenns 4
2 ENGENHARIA DE REQUISITOSoooiimiiiniintnisnenntssnnniesnsessscasssasassss 6
2.1 INETOUUGHD . 1oeesnesneannmsasseamssiracraearsssasssassssamasssinsiannsssase sansnestantnaessbBeusassotsn sobsssssans 6
2.2 O Processo de Engenharia de RequUisitos.......ccooeeiieeienversisnesesnnsnnns 8
2.3 Modelos de Processos de RequisSitoscccevveiemiiiennieereencrninsnsencenesensscninsnans 13
2.3.1 MOdel0 CaSCALA......coomrmrcrerreerr et nssssiasrs e ssss s ssa st ee s ssnens 14
2.3.2 Modelo Prototipag@io.......ccuecieemercsinnicmiiemninsnssisissssssinersnsssssssssossenesanees 15
2.3.3 Modelo Incremental..........coverimeirincriiniiniicnninininnnrn s st ssesssnesssssans 16
2.3.4 Modelo EVOIUCIONATIOcooeeerrurreriiiininiiistninestnnsenesessassasssssssss coseniaee 17
2.3.5 M0delo ESPITal......cccccoeecneiininininiinninssesicsrsessssssesssassssnsonscsssnnesessns 18
2.4 Qualidade em Engenharia de RequiSitoscccoveuieeuricrreinnrinsnmnnesnsisessniees 19
2.5 Métodos e Técnicas em Engenharia de Requisitos......ccocevereereecenienrniiniiniins 25
3 METODOS AGEISoreeeceeeeeetiseeiaesssseermassssmasosssmsssssssassssmsessssesssssssssssssssasas 29
3.1 INIFOAUGAD cvoveererrmrasnarncearraeemaesesassssssesssssssussassasssssssssmsssssnsrnstsssansssasansssnsabnisses 29
3.2 Defini¢dio do Método Agil de Desenvolvimento de SOtWArecccovvvervveines 30
3.2.1 08 VAIOTES.....cvecreeenieerenieeieecreesesneseressssssssssssnsrsorassssssrasssessesssssssssasesnis 32
3.2.2 05 PHNCIPIOS..c..ccceeniiiciiiiirisstisies e ssssnsssesssssanssssssacasessonsssssnesasassns 34
3.3 Principais MELOA0S AZESveverrveriarssmserammmessmsnessessesesscssessesssssesssssresnssessas 39
3.3.1 Extreme Programming........c..oeiimismnisiesearmmsssnisnsrnessssesssasssesssnsones 41
3.3.2 Feature Driven Development.........cccoeviirmerisnniesinnsnsssnsernnisssninssiins 46
3.3.3 Adaptive Software DevelOPIMENt.......ccoevevvrmriernnierinnsininnrassessseesennnens 48
3.3.4 Dynamic System Development Method...........cuerinieniininicninninnnns 50
3.3.5 Crystal FAMily.......occooinciniinciiiniisisasssississssssmssssssssssssensssssasessssesasssssses 53
3.3.60 SCIUIM ..cveeereiceerree et rt st tssestesissssessrra s tosessasasssessasssasmssseasesnassrnasashons 57
3.4 O Processo Geral do Moo Agil...........o.oeeeerreenreseermneesrsssssssraressssssssseasses 60
4 ENGENHARIA DE REQUISITOS NOS METODOS AGEIScvcncrunrivnnnnnas 65
4.1 Requisitos nos Métodos AGEIS oot 65
4.2 O Processo de Engenharia de Requisitos nos Métodos Ageis........c.ccrurreenn. 69
4.3 Engenharia de Requisitos em Extreme Programmingc.oeenerennennennne 79
4.4 Comparativo entre Rational Unified Process e Extreme Programming sob o
ponto de Vista de TEQUISITOS.....ccu ittt ne s ba et 84
4.4.1 Rational Unified ProCesscccvvmvmriricriniiene e 85
4.4.2 Requisitos no Rational Unified Process......c.ecerevrmviinnrnicssnniescsnscienennnnns 89
4.4.3 Requisitos em RUP versus Requisitos em XP..........ccoivirinvcnniinnnnn 95

4.5 Aderéncia do Extreme Programming ao Capability Maturity Model (CMM)

...

108

4.5.1 O modelo SW-CMMccoimirmireenieineenesesrcsreressessesesaseseresnssnssncsssass
4,52 XP e SW-CMM NIVEL dOiS.....cocsrreveeereimercrnrcninie e 111

5 CONCLUSAQooivcveensientesssssais s s essesssessssssasssss b ssass s sisssicons 115
5.1 Conclusdes € ContribUIGOEScveemrrermiceviiiniiinsi e s 115
5.2 Continuidade da PESQUISAcouvcviieiriiniiniieirrnsritsinnise s asseans 117

REFERENCIAS BIBLIOGRAFICAS

LISTA DE FIGURAS

Figura 1 - Estrutura Analftica (Wiegers, 1999) oo 8
Figura 2 - Geréncia e Desenvolvimento de RequiSitos........oovvivviecnscnrericiiiinnsinnenes 11
Figura 3 - Interface entre Requisitos de Software e outros Processos (Wiegers, 1999)
... 12
Figura 4 - Modelo Cascata (Dorfmann, 1997)......ccccoiviinnnnnnciiiiin 15
Figura 5 - Modelo Prototipagio (Dorfman, 1997) ...t 16
Figura 6 - Modelo Incremental (Dorfman,97) ..., 17
Figura 7 - Modelo Evolucionario - (Dorfman,97) ... 18
Figura 8 - Modelo Espiral (Kotonya, 1997) ... 19
Figura 9 - Métodos Ageis utilizados na Inddstria de Software (Charette, 2002) 40
Figura 10 - Processo Extreme Programming - adaptado (Wells, 2002}ccoooveuee. 46
Figura 11 - Processo Feature Driven Development - adaptado de {Coad, 1999)...... 48
Figura 12 - Processo Adaptive Software Development - adaptado de (Hi ghsmith,
50

g1 0100) SO OEPPP RO ST SIS R SR
Figura 13 - Dynamic Systems Development Method - adaptado de (DSDM, 2001) 52

Figura 14 - Classificagfo Crystal Family (Cockburn, 2001a)cocconsmmrsiiensnniesens 54
Figura 15 - Processo Crystal Family - adaptado de (Cockburn, 1 0) E:) S 57
Figura 16 - Processo Scrum - adaptado de (Beedle, 2001)...umncirinnconinsiiiinnninns 60
Figura 17 - Processo Agil GENIICO.civrrmrimsmrisssionmsssissisinissssssssssssessensssness 63
Figura 18 - Complexide Desenvolvimento Software - (Schwaber,02)......cccovvennennas 66
Figura 19 - Processo Requisitos Métodos Ageis - (Schwaber, 2002) ...c..ccvevruereninns 69
Figura 20 - Processo de Requisitos em Métodos Ageis — (Ambler, 2002)....c..cccevne. 71
Figura 21 - Efetividade de Comunicaggo (Cockburn, 20012) v 72
Figura 22 - Processo de Requisitos Ageis com Comunicagio Face-a-Face............... 72
Figura 23 - Processo de Requisitos Ageis com Entrega de Software Funcional...... 74
Figura 24 - Processo de Requisitos Ageis com Especificagio de Requisitos............ 76
Figura 25 - Processo de Requisitos Ageis com Geréncia de Requisitoscoceveveee. 78
Figura 26 - Rational Unified Process — (Pollice, 2001).eeeeicrvrireetrsne i 89
Figura 27 - Fluxo de Trabalho de Requisitos — (Rational, 2001) ...cccevevrrreinrennscrennes 91

Figura 28 - Atividades Requisitos XP: Exploracdo e Planejamento (Wake, 2001) 104
Figura 29 - Atividades de Requisitos: Brainstorming user story € definic#o tarefas

XP (Wake, 2001) .oooieireencacrrectiseissiessesessssenstase s ssassssessisbeassssssassusssisssasasas 105

LISTA DE TABELAS

Tabela 1- Atividades Engenharia REqQUISItOS......ccccvuevarevirrirsrerirecereseseesesesscnseereenes 10
Tabela 2 - Custo correcio erros (Boehm, 1981} apud (Young, 2001).......ccccevecerenne. 20
Tabela 3 - Direitos e Deveres do Cliente para atingir sua expectativa (Wiegers, 1999)

... 23
Tabela 4 - Engenharia de Requisitos X Métodos Aeis...........cvuveveeeeerseresssserscrannes 76
Tabela 5 - SW-CMM - niveis de maturidadecccovvvnrieiirivnrieioiesesesresecsecseens 110

1 INTRODUCAO

Este capitulo apresenta a abrangéncia do trabalho, os objetivos, a motivacio e as
consideragdes sobre a Engenharia de Requisitos para processos 4geis de

desenvolvimento de sistemas de software.

1.1 Consideracgdes Iniciais

O efetivo uso de um processo de Engenharia de Requisitos, pode reduzir custos,

implementar qualidade nos produtos e aumentar a satisfaciio dos clientes.

O processo de Engenharia de Requisitos deve ser encarado como uma atividade que
estd presente por todo o ciclo de vida de um sistema, onde informagdes sfo extraidas,

certificadas e testadas objetivando atingir os requisitos reais do domfnio envolvido.

De acordo com o relatério CHAOS publicado por Standish Group em 1998, das oito

principais razdes da falha de um projeto de software, cinco delas s3o relacionadas

com requisitos (Young, 2001):
- Requisitos incompletos
- Falta de envolvimento do usudrio
- Expectativa irreal do cliente
- Mudanga de requisitos e especificagdes
- Fungdes nio necessérias entregues.
O resultado disso, segundo o mesmo relatério, indica que: 46 % dos projetos sofrem

modificagdes no escopo inicial, 28 % falharam completamente ¢ 26% dos projetos

foram entregues com sucesso. Outros niimeros indicam que o custo final médio é

89% acima do estimado, o cronograma médio & ultrapassado em 122% e 45% da

funcionalidade entregue ndo & utilizada.

Progressos na disciplina de Engenharia de Requisitos estio sendo alcangados e
esforgos contfnuos, visando ganhos de qualidade e custos estio em andamento.
Processos e métodos sdo propostos e estudados para incluir a inddstria de software

dentro de uma previsibilidade de custos conforme o modelo de outras inddstrias

tradicionais,

Ammalmente deve-se concordar que se vive em um ambiente econdmico onde fortunas

sdo criadas e perdidas em questio de meses, denotando a essencialidade da

velocidade e adaptabilidade do negécio ao mercado.

Os ciclos de produtos da indiistria tradicional encurtaram e o software, como apoio
ou base para tais negécios, seguin 0 mesmo caminho: conseqilientemente, um
equivoco entre a necessidade real € o que o software pode oferecer pode acarretar, no

minimo, uma situacgfio bastante desconfortdvel para o negdécio.

Em ambientes com essas caracterfsticas, muitos dos métodos cldssicos de requisitos
propostos podem ndo possuir aderéncia ou funcionalidade necessdria 3 demanda
requerida; em contra partida, a inexisténcia ou um processo fatho de requisitos

podera corroborar os niimeros negativos do relatério do The Standish Group (Young,

2001).

Meétodos 4geis comecaram ser propostos como resposta a essa necessidade
emergente, reduzindo drasticamente as etapas no ciclo de desenvolvimento de
software e priorizando o mais rdpido possivel a entrega do software ou parte dele, de
forma funcional, ao cliente, baseando suas atividades e processos caracteristicos nas
imprevisibilidades dos requisitos do negécio e sua capacidade de se moidar

rapidamente a novas situagbes nio planejadas, prometendo a resposta para 0s

requisitos de velocidade e adaptabilidade emergentes.

1.2 Objetivos

O primeiro objetivo deste trabalho € apresentar a Engenharia de Requisitos
relacionada com os processos de software classicos, através de seus Processos,
atividades e métodos. Entende-se por processo cldssico, aquele em que o software é
desenvolvido através das fases de andlise, projeto, implementagio e testes, apoiando-

se na elaboragio de modelos.

O segundo objetivo ¢ expor o processo de requisitos dos Métodos Ageis; para isso,
880 apresentados os seus processos caracteristicos e os Métodos Agcis mais
utilizados. E feita a discussdo de forma geral e sob a Optica do método Extreme
Programming, sua aderéncia ao modelo SW-CMM, no que diz respeito & geréncia de

requisitos, e um comparativo com o processo unificado da Rational com relacdo a

disciplina de requisitos.

Finalmente, visa coletar as conclusdes e as possiveis melhorias das praticas de

Engenharia de Requisitos para uma maior abrangéncia na inddstria de software.

1.3 Abrangéncia

O escopo desta monografia est4 inserido na pesquisa de livros, artigos impressos e

materiais disponiveis eletronicamente. O contetido apresentado esti baseado nas

afirmagdes e conclusdes dos autores citados.

A monografia se restringe ao aspecto do processo da Engenharia de Requisitos,
apesar de muitas vezes existir men¢des ao processo completo de desenvolvimento de
software, ocasionado principalmente, pela caracteristica iterativa dos Métodos Ageis.
Nazo € escopo desta monografia promover ou refutar algum tipo de método em
particular, apenas servir como instrumento de informagdo. Citagdes favordveis ou

desfavordveis sfio referenciadas aos seus respectivos autores.

1.4 Motivacao

A motivagio desta monografia emergiu pelos assuntos tratados no curso de
Engenharia de Software ministrado pela Prof®. Dr*. Selma Melnikoff e o de
Engenharia de Requisitos ministrado pela Prof®. Jussara Pimenta Matos, constituintes

do curso de especializagio MBA — Engenharia de Software da Escola Politécnica da

Universidade de S3o Paulo.

Os assuntos tratavam sobre a especial contribuigdo da Engenharia de Requisitos no
desenvolvimento de um produto de software correto e de qualidade em ambientes
caracterizados pela volatilidade e instabilidade de seus requisitos, somados a uma
crescente necessidade pela entrega do produto de software em ciclos cada vez mais
curtos. O surgimento de um movimento denominado Desenvolvimento Agil de

software, onde seus valores e principios exploram esses assuntos, acabou

impulsionando o presente trabalho.

A andlise da presenga dos principios ¢ conceitos da Engenharia de Requisitos em tais
métodos tornou-se relevante, exibindo de que forma sfio tratados e aplicados como
uma forma de solucionar a demanda por software em ambientes instiveis e
competitivos. Essa andlise vai de encontro com a necessidade profissional, exigida
pelo mercado de software, sobre questdes referentes ao desenvolvimento de

requisitos de alta velocidade que normalmente ndo sdo amplamente discutidos.

1.5 Estrutura da Monografia

Este material cobre aspectos da Engenharia de Requisitos no sen processo dentro das

etapas de desenvolvimento de software e suas caracterfsticas nos Métodos Ageis.

Esta estruturalmente composto por cinco capitulos:

Capitulo primeiro: no presente capitulo sdo descritos as razdes e objetivos

para o desenvolvimento desta monografia e a sua estrutura.

Capitulo segundo: € apresentada a disciplina de Engenharia de Requisitos

com relag@o a seus processos, priticas, caracteristicas e métodos.

Capitulo terceiro: apresenta os Métodos Ageis de desenvolvimento, sua

definicdo, valores e principios, destacando vdrios Métodos Ageis em

utilizagfo atualmente.

Capitulo quarto: apresenta o processo de Engenharia de Requisitos nos
Métodos Ageis de forma geral, um comparativo entre o processo unificado da
Rational e método Extreme Programming, além de uma abordagem do

método Extreme Programming sobre o modelo SW-CMM sobre a éptica de

geréncia de requisitos.

Capitulo quinto: apresenta as conclusGes sobre o material apresentado, as

contribuigdes do trabalho e as sugestdes para extensdo da pesquisa.

2 ENGENHARIA DE REQUISITOS

Neste capitulo € apresentada a disciplina de Engenharia de Requisitos de forma geral,

sob perspectiva de seu formalismo, atividades, caracteristicas e modelos de processos

aplicados.

O contetido deste capitulo procura ressaltar os pontos principais na Engenharia de
Requisitos que sdo amparados ou refutados pelos métodos de desenvolvimento 4gil.
O capitulo é estruturado nos seguintes tdpicos: introdugio & Engenharia de

Requisitos, o processo de Engenharia de Requisitos, a qualidade nos requisitos e

métodos e técnicas,

2.1 Introducao

A defini¢do de requisitos, sob o ponto de vista da Engenharia de Software, &

(Wiegers, 1999):

1. Uma condigdo ou capacidade necessitada por um usudrio para resolver um

problema ou alcangar um objetivo.

2. Uma condigdo ou capacidade que deve ser satisfeita ou possuida por um

sistema ou componente do sistema para satisfazer um contrato, um padrdo

ou uma especificagdo.

3. Uma representa¢io documentada de uma condicfo ou capacidade como em

(1) ou (2).

A engenharia, de forma genérica, pode ser definida, segundo Holanda (1999), como
sendo a “Arte de aplicar conhecimentos cientificos e empiricos e certas habilitagdes

especificas a criacdo de estruturas, dispositivos e processos...”.

Pode-se definir Engenharia de Requisitos como uma arte de aplicar conhecimentos
cientfficos e empiricos de forma a alcangar a condigéio ou capacidade necesséria de

um usuério sobre um determinado problema.

De uma forma mais especifica, segundo Kotonya (1997), a Engenharia de Requisitos
corresponde a uma disciplina que cobre todas as atividades envolvidas na descoberta,
documentaggo e manutengdo de uma colegio de requisitos para um sistema
computacional, utilizando técnicas sistemdticas e repetitivas usadas para garantir que

os sistemas de requisitos sejam completos, consistentes e relevantes.

A Engenharia Requisitos viabiliza mecanismos adequados para entender e analisar as
reais necessidades do cliente, avaliar a viabilidade, negociar solugdes, especificar as

necessidades sem ambigiiidade, validar a especificagio e gerenciar os requisitos.

Portanto, um sélido processo apoiando a Engenharia de Requisitos é a melhor

solugdo para assegurar que a especificagiio do sistema alcance as necessidades e

satisfaga as necessidades do cliente (Pressman, 2001).

O cliente, definido como um individuo ou organizacdo, que obtém beneficios diretos
ou indiretos de um produto de software (Wiegers, 1999), torna-se parte central do
processo de requisitos. Desta forma, um processo de Engenharia de Requisitos deve

possuir algumas atividades essenciais, que séo basicamente focadas no cliente:

Elicitagdo dos requisitos;

- Anilise e negociagdo dos requisitos;

- Especifica¢fo dos requisitos;

- Verificagdo dos requisitos;

- Geréncia dos requisitos.

Este processo € detalhado a seguir.

2.2 O Processo de Engenharia de Requisitos

Um processo pode ser definido genericamente como “Maneira pela qual se realiza

uma operagdo segundo determinadas normas, métodos e técnicas” (Holanda, 1999).

Um processo caracteristico tipicamente envolve pessoas, grupos ou organiza¢des
integradas a procedimentos e métodos que definem os relacionamentos das

atividades, podendo ter suporte de ferramentas e equipamentos.

Uma estrutura analitica do processo de Engenharia de Requisitos pode ser
decomposta, segundo Wiegers (1999), em dois sub-dominios: Desenvolvimento de
Requisitos e Geréncia de Requisitos (Figura 1). O sub-dominio de desenvolvimento
de requisitos divide-se em quatro subgrupos de atividades fundamentais: Descoberta

ou Elicitagdo, Andlise e Negociagio, Especificaciio e Verificacdo.

Engenharia de Requisitos

Cesenvolvimento Requisitos L Geréncia de Requisitos 1

l Elicitag&o I I Andlise I |Especirica9§l Uarificag:éo

Figura 1 - Estrutura Analitica (Wiegers, 1999)

As atividades de desenvolvimento de requisitos sio compativeis com as apresentadas

por Kotonya (1997) e podem ser definidas como:

Elicitago: Os requisitos do sistema sfo descobertos através de consultas aos

stakeholders e a partir de documentos, conhecimento do dominio e estudos de

mercado.

Anélise e Negociacdo: Os requisitos descobertos sio analisados em detalhes e
os conflitos e as inconsisténcias detectados sdo negociados com os
stakeholders que definem quais requisitos deverdo ser priorizados. Este
processo € necessdrio porque os conflitos entre requisitos sio inevitdveis, e a

informacgio pode estar incompleta ou incompativel com o custo esperado para

0 projeto.

Especificacdo: Os requisitos resultantes sio documentados em um apropriado

nivel de detalhe, de modo a ser inteligivel a todos os stakeholders envolvidos.

Validagdo: os requisitos documentados sfio validados antes de serem usados
como base do desenvolvimento do sistema, devendo ser cuidadosamente

verificados em relagfio & sua consisténcia e seu grau de completeza.

A Geréncia de Requisitos € ligada ao estabelecimento e manutengio de um

acordo com o cliente sobre os requisitos para o projeto de software (Wiegers,

1999). Kotonya (1997) define que as principais fungdes em um processo de

geréncia de requisitos sdo:

Gerenciar as mudangas dos requisitos contratados.

Gerenciar o relacionamento entre os requisitos.

Gerenciar as dependéncias entre o documento de requisitos e outros

documentos de requisitos durante o processo de engenharia de software.

16

Complementado esta definigdo, Wiegers (1999), destaca que as atividades do

processos de des

envolvimento e geréncia de requisitos ndo devem ser

mutuamente exclusivas e muitas vezes sdo consideradas como atividades

sobrepostas. A tabela 1 apresenta estas atividades.

Tabela 1- Atividades Engenharia Requisitos

Desenvolvimento

1) Identificar as classes de usuirios esperados para o produto.

2) Elicitar necessidades de individuos que representam cada

classe de usuério.

3) Entender as atividades e objetivos atuais do usuario e

necessidades do negdcio.

4) Analisar as informacdes recebidas dos usudrios e
classificé-las em requisitos funcionais, regras de negécio,
atributos de qualidade, solugdes sugeridas e informagéio

extras.

5) Dividir os requisitos do nivel de sistema em subsistemas e

alocar os requisitos destinados ao software para componentes

de software.

6) Negociar prioridades de implementagio

7) Entender a importéncia dos atributos de qualidade

8) Traduzir as necessidades coletadas dos usudrios em

especificagdes escritas ¢ modelos.

9) Revisar a especificagio de requisitos para assegurar um
entendimento comum dos usudrios para os requisitos
contratados e corrigir qualquer problema antes do envio ao

grupo de desenvolvimento.

Gerenciamento

1) Definir a baseline dos requisitos (Uma fotografia no tempo

representando o contrato de requisitos atual).

2) Revisar as mudangas de requisitos propostos ¢ avaliar o

impacto de cada mudanga proposta antes de aprové-los.

3) Incorporar as mudangas de requisitos aprovadas no projeto

de forma controlada.

11

4) Manter os planos de projeto atualizados com os requisitos

do projeto de software.

5) Negociar novos comprometimentos baseados na estimativa

do impacto em fun¢io das mudangas de requisitos.

6) Rastrear os requisitos em relagio aos seus projetos,

modelos, c6digo fonte e casos de teste correspondentes.

7) Apontar o estado dos requisitos e atividades de mudanga

no andamento do projeto.

O processo e suas atividades descritas exigem uma interacio entre os
fornecedores e os consumidores de informagio no projeto de software, visando

um resultado na forma de requisitos reais do sistema a ser desenvolvido.

A figura 2 mostra a interagio entre a geréncia e o desenvolvimento de requisitos

¢ sua linha diviséria sob o ponto de vista de atuacio em um dominio de

informacao.
Marketing, Clientes, Gerentes
|
\Requisitos/
Nt ¥
Analise,
Documantagéo,
Reviséo,
Negociagio
Desenvolvimertto
Requisilos
————————— -i Requisitos Base -]- e
Geréncia de
Requisitos

Mudancas Ambiente

Ma_rketing, Mudangas
Projeto Projeto

Clientes, Requisitos

Processo
Requisito

Figura 2 - Geréncia e Desenvolvimento de Requisitos

12

Deve ficar claro que as atividades citadas e relacionadas com requisitos ndo devem
ficar restritas a apenas uma fase do ciclo de vida do processo. As atividades de um
processo de requisitos englobam completamente todo o ciclo de vida de um sistema e

ndo apenas atividades necessdrias direcionadas ao inicio de um projeto (Young,

2001); (Wiegers, 1999); (Kotonya, 1997).

Wiegers (1999) destaca como o processo de Engenharia de Requisitos interfere em
todos as outras atividades relacionadas a um projeto de desenvolvimento de software
(figura 3), concluindo que, mesmo tratando este processo como um evento isolado e
estitico, sua influéncia se refletird diretamente nos outros processos e atividades que
compbem o ciclo de vida do projeto de software. A interagfio da disciplina de

Engenharia de Requisitos com 0s outros processos € inerente ao desenvolvimento de

software,
Projact Plarning
Process
. o g o
Consiruation & ﬁ § g3 Projact Trathing
Process « gr= 4 § and Controt
.% & z g-. 4 Procass

8doog up
s186nbay

_!
:
l

%
o : ‘%‘*\i‘:\
oy
Documentation g - Change Corirol
Procass i
Sysiem Testing
Praoess

Figura 3 - Interface entre Requisitos de Software e outros Processos (Wiegers, 1999)

A implantag8o de um processo de Engenharia de Requisitos implica, sem divida

em custos, mas € necessdria, independente do porte dos projetos (Young, 2001); a

13

sua adogio e a busca por uma melhoria continua produzem efeitos positivos
comprovados na organizacdo. Essa adogfo requer fundamentalmente, segundo

Young (2001), um comprometimento efetivo da organizagio e suporte da alta

geréncia para seu sucesso.

Uma outra caracterfstica importante em um processo de Engenharia de Requisitos

¢ a mudanca.

As mudangas sfo comuns a um processo fundamentado em pessoas. Um
processo de requisitos deve ser capaz de acomodar mudancas dos requisitos ao
longo do ciclo de vida do sistema. As alteracBes podem ser causadas por vérios
fatores internos ou externos ao dominio do projeto. Os fatores internos podem ser
€rros ou ndo entendimento do problema a ser solucionado, problemas de projeto
ou implementacfio, requisitos emergentes, conforme stakeholders desenvolvem
um melhor entendimento do sistema. Como fatores externos podem-se citar as

estratégias de negécios, as mudangas econdmicas e 0s novos concorrentes.

A capacidade de absorgio de mudangas de requisitos em um processo denota sua

maturidade e efetividade em relagdio as expectativas do cliente ou organizagdo

(Young, 2001).

2.3 Modelos de Processos de Requisitos

Para solucionar problemas na inddstria, um engenheiro ou equipe de engenheiros
deve incorporar uma estratégia de desenvolvimento que englobe o processo, métodos
¢ ferramentas. Esta estratégia é muitas vezes conhecida como modelo de processo ou
paradigma de engenharia de software (Pressman, 2001). Dorfman (1997) destaca os
seguintes modelos como sendo mais significativos do ponto de vista de Engenharia

de Requisitos: cascata, prototipagdo, incremental, evolucionirio e espiral. Esses

modelos sdo apresentados a seguir.

14

2.3.1 Modelo Cascata

Provavelmente € uns dos modelos mais largamente utilizados. Neste tipo de modelo
(figura 4), a determinagdo dos requisitos deve ser completa ou muito préxima disto,
antes que qualquer implementagdo comece. O modelo exige um alto grau de
visibilidade gerencial e controle (Dorfman, 1997). A adogdo de um modelo

seqliencial como o tipo cascata possui alguns problemas comuns, como aqueles

citados por Pressman (2001):

- Projetos reais raramente seguem o fluxo seqilencial que o modelo propde.
Embora 0 modelo linear possa trabalhar com iteracdes, isso deve ser feito de

forma indireta podendo causar, no caso de mudangas, confusio na atuagfio da

equipe de projeto.

Existe uma grande dificuldade para o cliente expor todos os requisitos. O

modelo seqiiencial necessita isto e tem dificuldade em absorver incertezas

naturais que existam no inicio dos projetos.

O cliente deve ter paciéncia. Uma versio funcional do software somente
estard disponivel nas fases finais do ciclo de vida. Os requisitos néo

detectados até a avaliagiio do software funcional, podem ser desastrosos para

0 projeto.

Arvilise
A l

Codificagio

L y
Tastes

Integeacso

15

Figura 4 - Modelo Cascata (Dorfmann, 1997)

2.3.2 Modelo Prototipacio

O ciclo de vida da prototipago objetiva o uso de um sistema funcional que auxilie a
determinag#o de requisitos (Dorfman, 1997). Neste modelo (figura 5), algumas
fungdes sdo construidas com controle e formalidade suficientes, para serem
manipuladas pelo usudrio, de modo a determinar mais requisitos detalhadamente. O
prot6tipo &, portanto, avaliado pelos clientes e utilizado para refinar os requisitos do
software a ser desenvolvido. Iteragdes ocorrem de modo que o protétipo é ajustado
para satisfazer as necessidades do cliente, enquanto que, em paralelo, habilita o

projetista a obter um melhor entendimento do que € necess4rio ser feito (Pressman,

2001).

A quantidade de andlise de requisitos que precede a prototipacio depende da
especificagio do problema. Normalmente, recomenda-se que o protétipo deva ser
usado para ajudar a gerar uma colegio vilida de requisitos; apds os requisitos serem
definidos, eles devem ser documentados e o desenvolvimento deve prosseguir,

utilizando os requisitos como baseline para a geréncia (Dorfman, 1997).

A utilizagdio da prototipagfio no ciclo de vida do projeto pode ser considerada como

uma ferramenta ou um método de apoio 2 anélise de requisitos dentro de um modelo

seqiiencial tipo cascata.

!

Requisitos

Ardiise
Proia

Constucio
Proiotipe

Tesie
Protitipa

Figura 5 - Modelo Prototipac¢io (Dorfman, 1997)

2.3.3 Modelo Incremental

O modelo de ciclo de vida de desenvolvimento incremental tem, por meta, uma
anélise de requisitos e esforgo de especificagdo unitérios, ou seja, limitados ao
escopo de um incremento no ciclo de desenvolvimento por vez; os requisitos e os
esfor¢os sio distribuidos por uma série de incrementos que sio, a principio,

estanques mas podem se sobrepor no ciclo de vida do modelo (figura 6).

Documento
Requislios

Andlize

Cadificaggc

Tastes

[ntagracho

16

Na sua concepgio original, os requisitos sdo considerados estdveis, como no ciclo de

vida em cascata, mas na pritica os requisitos para incrementos posteriores podem
mudar conforme a tecnologia avanga ou a experiéncia com as entregas dos
incrementos anteriores aumenta. Segundo Dorfman (1997), este modelo ndo é

efetivamente muito diferente do modelo de desenvolvimento evolucionério.

17

= T=T=T=1]
==~]

Figura 6 - Modelo Incremental (Dorfman,97)

2.3.4 Modelo Evolucionario

O modelo de ciclo de vida de desenvolvimento evoluciondrio (figura 7) se baseia em
uma seqiiéncia de esforgos de desenvolvimento, cujo propésito é, a cada ciclo,
entregar um produto a ser utilizado no ambiente operacional do cliente. A diferenga
com o modelo de prototipagio, cujo propdsito de cada produto entregue é auxiliar na
determinagdo dos requisitos, no modelo evolucionério, cada ciclo ou evolugio
fornece um produto com mais alguma capacidade operacional. Contudo, a

realimentag¢do dos usudrios do sistema funcional afeta os requisitos necessérios para

entregas posteriores (Dorfman, 1997),

Cada entrega, neste modelo, representa um ciclo de desenvolvimento completo,
incluindo a andlise de requisitos. O produto de cada fase de andlise de requisitos é
uma soma ou uma agregagdo para a fase de andlise de requisitos correspondente das
entregas anteriores. Cada entrega pode ser encarada como um pequeno exemplo de
ciclo de vida cascata, em fungio de um processo de desenvolvimento rdpido, e ciclo

de entrega o menor possivel, para minimizar os riscos de requisitos instdveis

(Dorfman, 1997).

18

Reguisitns | Andfise | Codificagiio | Testes Integragéo CaM

1
I
)
[
Reyuisitos | Andlise | Codilcacio Tés!d]s]l I] tegragio 2t]
| |1 1
YYY T vy
Reguisitos | Andlise | Codificagiio | Testes It

Figura 7 - Modelo Evoluciondrio - (Dorfman,97)

2.3.5 Modelo Espiral

O modelo Espiral enfatiza a geréncia do desenvolvimento do produto e seu risco.
Dorfman (1997), descreve o modelo como uma combinagio dos modelos cascata, de

prototipagfo e incrementais utilizados por varias fases do desenvolvimento.

O modelo espiral deixa clara a idéia de que a re-avaliagio a cada ciclo completo da
espiral permite direcionar o comportamento do processo através das realimentacdes
dos clientes, dos resultados dos protétipos, das visdes iniciais, dos avancos de

tecnologia e da determinacéo de riscos de projetos e financeiros.

O modelo espiral ¢ caracterizado como um modelo gerador de processo: dada uma

gama de condigdes, a espiral produz um modelo de desenvolvimento mais detalhado.

Por exemplo, na situagio onde os requisitos possam ser previsiveis e com baixos
riscos, o modelo espiral ird se comportar como uma aproximagio do processo em
cascata. Se os requisitos sdo incertos, outros modelos tais como incremental ou
prototipacdo podem ser adaptados ao modelo espiral. E, como mencionado
anteriormente, a re-avaliagio apés cada ciclo de espiral completo permite ajustes no

processo, em fung@o das fases concluidas (Dorfman, 1997).

Para um efetivo desenvolvimento de requisitos, as atividades devem se processar de

forma iterativa e continua, com as fronteiras do dominio de cada atividade se

19

sobrepondo ¢ criando um mecanismo de realimentagfo de informagdio de uma
atividade para outra (Kotonya, 1997). Estas atividades sfo realizadas seguindo

também um modelo espiral, conforme apresentado na figura 8.

Declaragio
Fonto de Deciséo Informial de
~ Ageitar o Documenio Requisitos
- Re-enirar na esgiral
C m\
- - Andlisee
Extracao de >
Requisios [~ | Wg&?
i [!’ I{n:fsiu \ \ \ -
Documenios de ‘ \ \ / } }
Requisitos ¢
Relatédo de Yalidagsio dos Dorumentagsio
Vaiidacso Requisitos < | de Requisitos
Praft do
Boaumento de
* Requishos

Figura 8 - Modelo Espiral (Kotonya, 1997)

Neste modelo, diferentes atividades de requisitos sfio repetidas até a decisdo de
aceitagfio do documento de requisitos. Se a versdo atual do documento de requisitos
possui problemas identificados, o desenvolvimento de requisitos (elicitacdo, anilise,
documentagfio e validag@o) € realimentado no modelo espiral e continua até que o
documento de requisitos produzido possua aceitacio ou fatores externos como
limites de cronograma e falta de recursos indiquem que o desenvolvimento de

requisitos deva ser concluido. Quaisquer mudangas dos requisitos tornam-se parte da

Geréncia de Requisitos (Kotonya, 1997).

2.4 Qualidade em Engenharia de Requisitos

Segundo Wiegers (1999), requisitos com qualidade sdio aqueles que atingem as

necessidades reais do cliente ou organizacgéo.

20

Um processo de requisitos falho ou com pouca efetividade no encontro dos requisitos
reais dos usudrios pode acarretar sérios prejuizos ao projeto, conforme pode ser

observado na Tabela 2.

Tabela 2 - Custo corregio erros (Boehm, 1981) apud (Yeung, 2001)

Fase onde o erro foi encontrado Custo
Relativo
Requisitos 1
Projeto 3-6
Codificagdo 10
Teste de Desenvolvimento 15-40
Teste de Aceitagio 30-70
Operacio 40-1000

»

Uma forma de se obter qualidade nos requisitos € utilizar processos de
desenvolvimento de software iterativos, quando possivel, como forma para redugéo
dos custos e diminui¢io de riscos. Através de repetidas interagdes e com a presenga
de um processo de requisitos em todas as fases do processo de desenvolvimento,
requisitos tornam-se mais consistentes e estdveis, minimizando a possibilidades de

mudangas nos estagios finais do desenvolvimento (Young, 2001).
Um processo de Engenharia de Requisitos, em suas atividades de desenvolvimento e

geréncia de requisitos, deve contemplar certas condigdes para obter qualidade em

seus resultados. Estas condigdes sdo apresentadas, agrupadas em termos de:
- verificagfio de requisitos
- elicitagéo de requisitos

- especificacdo de requisitos

21

geréncia de requisitos.

Em termos de verificagdo de requisitos, deve-se observar as seguintes caracteristicas:

A especificagio de requisitos contempla 0 comportamento e caracteristicas do

software a ser construido.
Os requisitos sdo completos.
Todos os pontos de vista dos requisitos sdo consistentes.

Os requisitos proporcionam uma base adequada para continuar com a andlise,

construcio e testes do produto.

Em termos de elicitagio de requisitos deve-se verificar se os requisitos sdo (Wieger,

1999):

Completos: cada requisito deve descrever completamente a funcionalidade a

ser entregue.

Corretos: cada requisito deve descrever corretamente a funcionalidade a ser

construida. Somente usudrios ou seus representantes podem certificar o

estado de requisito correto.

Decomponiveis: Devem possibilitar a implementagfo de cada requisito dentro

das capacitagdes conhecidas e limitaces do sistema ¢ seu ambiente.

Necessdrios: Cada requisito deve ser documentado como algo que o cliente

realmente necessita ou algo que € requisitado para complementar um sistema

externo ou um padrio.

22

- Priorizdveis: Devem permitir uma hierarquiza¢o de prioridade, indicando o

quanto é essencial para uma dada verséo do produto.

Sem ambigiiidade: Todos os leitores dos requisitos devem ter a mesma

interpretacfio consistente dos requisitos.

Verificdveis: Cada requisito deve possuir uma quantidade de testes ou tipos

de verificagfio, como inspec¢do ou demonstragdes.

Em termos de qualidade, uma Especificagiio de Requisitos deve ser(Kotonya, 1997):

Completa: nenhum requisito ou informagio necessdria deve estar ausente.

Consistente: N3o existe conflito entre os requisitos de software ou com outros

requisitos de mais alto nivel de negécios ou sistemas.

Modificdvel: Deve proporcionar revisdes, quando necessdrio, e permitir

manter um histérico de mudangas efetuadas de cada requisito.

Rastredvel: cada requisito de software que foi derivado deve possuir sua
origem referenciada, de forma que os elementos de projeto, cédigo fonte e

casos de teste criados possam certificar a correta implementagdo dos

requisitos.

Como documentagio em Engenharia de Requisitos, o termo especificagio ¢é
amplamente citado e definido. Utilizando novamente Holanda (1999), uma
especificagio significa “descrigdo rigorosa e minuciosa das caracteristicas que um
material, uma obra, ou um servico que deverdo apresentar”. No contexio de
Engenharia de Requisitos, uma especificagio de requisitos de software define
precisamente a funcionalidade e as capacidades que um sistema de software deve

prover e quais condi¢des, do dominio em que estd inserido, deve respeitar (Wiegers,

1999).

23

Em termos de geréncia de requisitos com qualidade, Wiegers (1999) destaca as

seguintes: atividades:

- Gerenciar as alteracSes para os requisitos contratados;

- Gerenciar os relacionamentos entre 0s requisitos;

Gerenciar as dependéncias entre os requisitos documentados e todos os outros

documentos produzidos durante o processo.

As atividades de uma geréncia efetiva de requisitos necessitam um processo definido

para absorver as mudangas propostas e avaliar os custos potenciais dessas alteragdes

e seus riscos (Wiegers, 1999).

Além da busca pelas condigdes listadas, a qualidade de requisitos estd diretamente
relacionada com as pessoas envolvidas no processo. Requisitos de alta qualidade
emergem de uma efetiva comunicagiio e colaboragdo entre projetistas e clientes —

uma parceria com seus direitos e deveres estabelecidos (Ambler, 2002).

Wiegers (1999) elege dez direitos e deveres que os clientes de software devem

conhecer para atingir a expectativa de requisitos de alta qualidade (Tabela 3).

Tabela 3 - Direitos e Deveres do Cliente para atingir sua expectativa (Wiegers, 1999)

Direitos Deveres
1 |Os analistas devem falar sua 1 |Educar os analistas sobre seu
linguagem negécio e jargdes.
2 |Os Analistas devem aprender 2 | Gastar o tempo necessirio para
sobre seus negécios € seus €Xpor 0s requisitos e esclarecé-los.

objetivos para o sistema.

3 |Os Analistas devem estruturar a 3 | Ser especifico e preciso quando

informagao coletada durante a fornecer informagdes sobre 05

24

elicitagio de requisitos na forma
de uma especificagdo de requisitos

de software

requisitos do sistema

Os desenvolvedores devem
explicar todo o produto que é
criado a partir do processo de

requisitos

Tomar decisGes ageis sobre

requisitos quando necessério.

Os devenvolvedores devem tratar
com respeito € manter uma atitude
colaborativa e profissional durante

as interagdes.

Respeitar as estimativas do
desenvolvedor com relagfo a custos

e viabilidade dos requisitos

Os desenvolvedores devem
compartilhar as idéias e
alternativas para a implementagio

dos requisitos.

Priorizar os requisitos e as fun¢des

do sistema.

Descrever caracteristicas do
produto que o farfio de agraddvel e

facil uso.

Revisar requisitos e protétipos.

Ser apresentado a oportunidades
para ajustar seus requisitos e
permitir ¢ reuso de componentes

de software existente.

Comunicar mudangas nos requisitos

de projeto tdo logo acontecam.

Ser informado com estimativas
reais de custos, impactos e
alteracbes quando da mudanca de

requisitos.

Seguir 0 processo definido para

solicitar a mudanca de requisitos.

10

Receber um sistema que va de
encontro as expectativas
funcionais e de qualidade

desejadas.

10

Respeitar os processos de
Engenharia de Requisitos utilizados

pelos desenvolvedores.

25

Nota-se que, seguindo a recomendacéo de Wiegers (1999), os requisitos de qualidade

possuem uma estreita ligagio com os atributos comunicagio e colaboragio.

Produtos de software de exceléncia constituem o resultado de um projeto bem

concebido baseado em requisitos de alta gqualidade.

2.5 Métodos e Técnicas em Engenharia de Requisitos

Os métodos e as técnicas fornecem suporte a Engenharia de Requisitos € aos seus
processos, através da sistematizacfo das suas atividades. Algumas vantagens da

utilizagdo de técnicas e métodos de requisitos sdo listadas por Young (2001):

Desenvolve-se maior efetividade na implementagdo dos requisitos;

- A documentacfo é mais completa e detalhada;
- O cbdigo ¢é testado com maior cuidado;

- O ambiente é mais bem controlado, possibilitando transi¢des suaves de uma

atividade para outra;

Existe o conhecimento sobre onde os problemas estio ocorrendo durante o

desenvolvimento.

Existe uma grande quantidade de métodos e técnicas disponiveis para utilizagdo em
Engenharia Requisitos. Normalmente tais métodos ndo sdo utilizados singularmente
mas em conjungdo, objetivando ampliar o escopo na obtengio dos requisitos reais
necessirios e sua manutencio. Um bom ndmero destas técnicas tem sido
desenvolvido visando a redugio da taxa de mudancas de requisitos, ou pelo menos

tornd-las menos destrutivas para o projeto (Young, 01).

26

Os melhores métodos de Engenharia de Requisitos, de acordo com sua efetividade,
foram relacionados por Jones (1998) apud Young (2001). Para isso, foram coletados
dados de 1984 a 2000 de mais de 650 organiza¢des. Dessas empresas, 150 estfo
classificadas na Revista Fortune 500, por volta de 30 sdo grupos
governamentais/militares e os dados correspondem a um dominio de
aproximadamente 9000 projetos. Estes dados exibem métodos e técnicas que podem

ser utilizados em todo o ciclo de desenvolvimento, ndo sendo apenas na fase de

andlise de requisitos.

A lista dos melhores métodos de requisitos compreende:

- Inspecdes Formais (projeto e c6digo)

- JAD - Joint Application Design

- QFD — Quality Function Deployment

- Métricas de qualidade utilizando ponto de fungdo.
- Métricas de qualidade utilizando classificagio ortogonal da IBM
- Ferramentas para rastreamento de defeitos

- Garantia de qualidade efetiva

- Controle de configuragfo formal

- Levantamento da satisfacdo do usudrio

- Plano de testes formais

- Ferramentas para estimativa de qualidade

- Ferramentas de testes automatizados.

O levantamento de Jones (1998) apud Young (2001) também mostra que 0s maiores
problemas estfio relacionados com requisitos incompletos e instaveis. Desta forma, o
objetivo dos métodos e técnicas € aumentar a previsibilidade dos requisitos, tentando

reduzir a porcentagem de requisitos instiveis em um projeto de software.

Jones (1998) apud (Young, 2001), destaca as seguintes técnicas ¢ métodos como

tendo valor positivo para minimizar a presso de requisitos instdveis sobre o projeto:

27

Joint Application Design

JAD (Joint Application Design) é um método para desenvolvimento de
requisitos de software, onde os representantes dos clientes e dos projetistas
trabalham em colaboragio com um facilitador, para produzir uma
especificacio de requisitos comum com a concordancia dos dois lados.
Comparado com antigos estilos de desenvolvimento de requisitos, onde os
lados se encaravam como adversirios, o JAD pode reduzir os requisitos
instdveis pela metade. E uma excelente escolha para grandes contratos de

software que objetivam um efetivo canal de interacfio entre projetistas e

clientes.

Prototipacgdo

Geralmente, as mudang¢as ndo ocorrem até que os clientes visualizem
fisicamente o produto; desta forma, a construgfio de protétipos pode provocar
algumas dessas mudangas no inicio do ciclo de desenvolvimento. Protétipos
sdo, com freqiiéncia, mais efetivos na redugfio de requisitos instaveis € podem
ser combinados com outros métodos como JAD. Somente 0s protétipos sdo

responséveis pela redugiio dos requisitos instdveis a uma taxa entre 10% a

25%.

Casos de Uso
A técnica de casos de uso se integra normalmente ao modelo mental de

stakeholders tipicos, concentrando-se no conjunto de requisitos relacionados
a uma seqii€ncia especifica de ages e respostas que um hipotético sistema de
software deva executar. A vantagem de utilizar esta técnica € que mantém o
processo de requisitos em um nivel pritico e minimiza a tendéncia de

adicionar fun¢des superficiais que nfio vdo de encontro as expectativas dos

stakeholders.

Conselho de controle de mudancas

O conselho de controle de mudangas de requisitos ndo é exatamente uma

técnica, mas um meio que um grupo de gerentes, clientes e pessoal técnico

28

possuem para se encontrar € decidir quais mudangas devam ser aceitas ou
rejeitadas. Trata-se de um canal formal de comunicagiio e avaliagio de

mudangas de requisitos.

Estes métodos foram destacados pela sua efetividade devido as seguintes

caracteristicas;

- Joint Application Design: tem a caracteristica da conversacio face-a-face e a

colaborag¢do, como fator para levantamento de requisitos.

- Prototipagdo. fomece, ao cliente, um produto tangivel onde pode verificar

concretamente seus requisitos € possiveis mudangas.

Casos de Uso: representam a transcri¢o de um modelo mental do cliente, em

termos de eventos que reflitam os requisitos do negécio e suas prioridades.

- Conselho de controle de mudangas: comunica a todos os integrantes, de

forma colaborativa, o estado dos requisitos do projeto.

Estas caracteristicas merecem destaque, pois elas estarfio presentes, sob do ponto de

vista de seu conceito, em todos os Métodos Ageis, como serd exposto nos capitulos

seguintes.

29

3 METODOS AGEIS

O objetivo deste capitulo é apresentar o Manifesto do Desenvolvimento de Software

Agil e detalhar seus valores e principios.

Em seguida, séo apresentados os principais Métodos Ageis em pratica e por fim uma

proposigo de um processo 4gil genérico aderente as definigBes expostas.

3.1 Introdugio

Ao final do encontro nos dias de 11 a 13 de Fevereiro de 2001, 17 pessoas
envolvidas com desenvolvimento de software, proponentes e praticantes de
processos de desenvolvimento leves e rdpidos, elaboraram um documento, onde
colocaram as expectativas comuns sobre esse novo ponto de vista sobre 0 processo

de desenvolvimento de software. Surgiu o Manifesto para o Desenvolvimento Agil

de Software que é transcrito a seguir:

“Estamos evidenciando maneiras melhores de desenvolver software fazendo-o nés

mesmos e ajudando outros a fazé-lo. Através desse trabalho, passamos a valorizar:

o Individuos e interacdo mais que processos e ferramentas.
o Software em funcionamento mais que documentagdo abrangente.
o Colaboragdo com o cliente mais que negociagdo de contratos.

© Responder a mudancas mais que seguir um plano.
Ou seja, mesmo tendo valor os itens a direita, valorizamos mais os itens a esquerda.

Nos seguimos os seguintes principios:

v' A maior prioridade é satisfazer o cliente, 0 mais breve possivel e

continuamente, com software funcional,

30

v' Mudangas de requisitos sdo bem-vindas. Processos dgeis privilegiam
as mudangas como vantagem competitiva para o cliente.

v Entrega de software funcional fregiiente, preferencialmente em curtas
escalas de tempo.

v Desenvolvedores e pessoas ligadas ao negécio trabalham em
conjunto diariamente no projeto.

v’ Criar projetos cercados por pessoas motivadas, fornecendo ambiente
e suporte necessdrios para acreditarem no trabalho feito.

v" O mais eficiente e efetivo método de transmitir informagdes para e
entre uma equipe de desenvolvimento ¢ a comunicagdo verbal face-a-

face.
v’ Software funcional entregue é a medida bdsica de progresso do

projeto.

v’ Métodos Ageis promovem desenvolvimento sustentado. Os
patrocinadores, desenvolvedores e usudrios devem ser capazes de
manter uma trangiiilidade constante indefinidamente.

v' Cuidado continuo com a exceléncia técnica e um bom projeto
acentuam a agilidade.

v’ Simplicidade — a arte de maximizar o quanto de trabalho ndo deve ser
Jeito — € essencial.

v' As melhores arquiteturas, requisitos e projetos surgem de equipes
auto-organizadas.

v' Em intervalos regulares, a equipe reflete em como se tornar mais

efetiva, ajustando-se em comum acordo.

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon
Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland,

Dave Thomas ™ (Beck et al., 2001).

3.2 Defini¢iio do Método Agil de Desenvolvimento de Software

31

Apesar de grande avango verificado, processos clissicos de desenvolvimenio de
software ndo respondem adequadamente em alguns domfnios, onde a velocidade das

mudangas de requisitos € uma constante.

Tentando construir uma solugdo para este tipo de problema, novos métodos
comegam a nascer, muitas vezes amparados nos métodos classicos ou como uma
particularizagiio de processos atualmente em uso. H4 poucos anos tem crescido
rapidamente o interesse pela agilidade em processos. Os Métodos Ageis,
caracterizados como um antidoto para a burocracia ou uma licenga para a

simplificacdo, tem provocado grande interesse de todos sobre o horizonte do

desenvolvimento de software (Highsmith, 2001).

O movimento nio repudia processos, ferramentas, documentagdes, contratos ou

planejamento, mas avalia quantos desses artefatos devem ser agregados ao projeto.

Os métodos classicos impdem um processo disciplinado no desenvolvimento de
software, com o objetivo de maior previsibilidade e eficiéncia, através de um

processo detalhado com uma grande é€nfase no planejamento, inspirado em outras

disciplinas da engenharia (Cockburn, 2001a).

A major critica para estes processos, chamados de processos peso pesados ou
conforme o termo de Highsmith (2001) - metodologias monumentais, é que eles se
tornam burocréticos. A grande quantidade de artefatos e documentagdes necessaria

para seguir o processo acaba reduzindo sua velocidade, tornando-os incompativeis

com um dominio onde a agilidade é um requisito importante.

Enquanto os métodos cldssicos focam a previsibilidade dos fatos, procurando manter
um planejamento detalhado para grande parte do processo de desenvolvimento por
um intervalo grande de tempo, os Métodos Ageis procuram ser altamente adaptéveis
¢ reagir rapidamente as mudancas de requisitos (Fowler, 2002a). Essa caracteristica

de buscar a previsibilidade dos requisitos e criar um longo planejamento baseado

32

nessa previsibilidade acaba provocando uma resisténcia natural a mudangas e

conseqiiente falta de qualidade no produto desejado pelo cliente.

Os Métodos Ageis tentam ser processos que se adaptam e prosperam com as

mudangas de requisitos, apoiados em um de seus principios bisicos: as mudangas de

requisitos sdo bem vindas.

Uma outra caracteristica importante que se destaca nos Métodos Ageis é a sua forte
orientacdo a pessoas € ndo a processos. Métodos tradicionais buscam o
desenvolvimento dos processos, onde as pessoas s3o partes substituiveis e encaradas
como recursos sob o ponto de vista do gerenciamento. Para os Métodos Ageis, o
desenvolvimento de software é um trabalho altamente criativo e profissional,
inviabilizando este tipo de fundamentaco. Por isso, os Métodos Ageis rejeitam esta
caracteristica dos métodos tradicionais pois, para um processo altamente iterativo,
requer uma equipe de desenvolvedores altamente efetivos e em sinergia (Boehm,
2002). Tratar pessoas como componentes do processo € um engano, pois as pessoas

sdo altamente varidveis e ndo lineares, com particulares modos de reagio a sucessos

e falhas (Cockburn, 2001a).

O foco nas pessoas torma possivel que os Métodos Ageis sejam altamente adaptéveis;
as pessoas decidem como conduzir seu trabalho, avaliar seus resultados e se auto-

organizar no processo, ndo existindo um departamento ou entidade separada

decidindo e planejando como o trabalho deve ser feito.

3.2.1 Os Valores

Os quatro valores fundamentais dos Métodos Ageis, segundo a anélise de Cockburn

(2001a), sdo caracterizados como:
a. Individuos e interacdo mais que processos e ferramenias.

Meétodos tradicionais normalmente caracterizam, em seu processo de

desenvolvimento, pessoas como recursos em suas atividades. Esses

33

processos enfatizam as atividades, e ndo o desempenho de individuos
em uma determinada atividade. Pensar em pessoas como recursos que
possam ser somadas ou diminuidas, conforme o andamento do
processo, pode se tornar inconveniente em um ambiente de trabalho
criativo, como o projeto de software. Capacidade e perfil adequado €
realcado em processos ageis, onde as pessoas sdo partes fundamentais

no processo e ndo s#o encaradas como componentes de facil

substitui¢do.

Software em funcionamento mais que documentagdo abrangente.

Documentos contendo requisitos, anilise ou projeto podem ser muito
dteis no auxilio do trabalho dos desenvolvedores e ajudar no
delineamento do futuro, mas cédigo funcional, que tenha sido testado
e verificado, revela grande quantidade de informagGes sobre a equipe,
o processo de desenvolvimento e a natureza dos problemas e serem
resolvidos. Os Métodos Ageis focam principalmente na

implementac&o, mas também atribui valor a modelagem desde que

seja veloz.
Colaboracdo com o cliente mais que negociagdo de contratos.

Este valor enfatiza o sentido da colaboragfio verdadeira entre a equipe
de desenvolvimento e seu cliente. A colaboragdo objetiva um sentido
de comunidade, respeito, decisdo conjunta, comunicacgio 4gil € busca
da interacdo entre os individuos. Este valor sugere que um processo de
colaboragiio fortificado e construtivo faz dos contratos formais
desnecessdrios. Nos casos em que o risco seja alto, a colaboracédo
efetiva pode ser a solugfio. A idéia bésica por trds deste valor € a

satisfagfio geral do cliente, que é o principal objetivo nos M¢étodos

Ageis.

34

d. Responder a mudangas mais que seguir um plano

Requisitos mudam constantemente pela natureza iterativa e de
incertezas no desenvolvimento de software, aliado a ambientes
altamente competitivos de negécios e de tecnologia. Essas mudangas e
instabilidades devem ser contempladas em um processo de
desenvolvimento de software. Os Métodos Ageis consideram que
requisitos somados a uma meta rigida de desenvolvimento ndo podem
ser fixados no inicio, mas que serfio naturalmente alterados conforme
o andamento do projeto e seu entendimento. O plancjamento é
utilizado em Métodos Ageis, como também os mecanismos de
contratos de requisitos, desde que sejam flexiveis ¢ nfio busquem a

previsibilidade dos fatos.

Um processo definido, mas flexivel é a chave para prover a continuidade, auxiliando

a organizag¢do a atingir os resultados desejados em ambientes de alta volatilidade.

3.2.2 Os Principios

1) A maior prioridade é satisfazer o cliente, 0 mais breve possivel e

continuamente, com software funcional.

Um desenvolvimento iterativo fornece uma realimentagdo constante para
a equipe de desenvolvimento, promovendo a definicdo de requisitos,
arquitetura e solugdes de programagdo. Schwaber (2002) afirma que
incrementos de trabalho, compostos de sistema funcional, criam uma
relagdo direta entre progresso e entrega do produto e prové mecanismos
para os stakeholders fornecerem e ratificarem os requisitos sobre um
produto real.

O software funcional gera dados de comunicagiio e planejamento
especialmente entre desenvolvedores e cliente, no que tange ao

entendimento das necessidades, esclarecimento e defini¢iio dos requisitos

do sistema.

35

A geréncia € auxiliado, pois as entregas fornecem marcos para o controle

do estado do projeto e um guia para o planejamento do projeto.

2) Mudancas de requisitos sdo bem-vindas. Processos dgeis privilegiam

as mudangas como vantagem competitiva para o cliente.

Requisitos de software tendem a mudar freqiientemente e radicalmente
enquanto o esforco de desenvolvimento acontece. Diferentes Métodos
Ageis propdem diferentes modos de reagir 4 mudanga dos requisitos, mas
basicamente todos direcionam para a entrega de software funcional, o
mais breve possivel e dentro de um processo iterativo (Fowler, 2002).

A utilizagio de uma politica rigida de mudangas de requisitos, em fungio
da complexidade de uma mudanga requerida pode desencorajar 0s
clientes, agregando requisitos invilidos para o negécio e resultando em
produtos sem o valor desejado pelo negécio.

O contrato tradicional de requisitos entre desenvolvedor e cliente tende a
criar um relacionamento desequilibrado em termos de vantagens no ciclo

de vida do projeto; facilitar a mudanga acaba sendo mais efetivo que

tentar preveni-la.

3) Entrega de software funcional freqiiente, preferencialmente em curtos

intervalos de tempo.

A entrega de software funcional, ja discutida no principio 1, favorece uma

ripida realimentagdo, fornecendo dados para corregdo ¢ direcionamento

dos requisitos do produto.
A geréncia dos requisitos se torna mais eficiente, criando um ambiente

para rapidas alteragOes e testes dos requisitos.

Um ciclo rdpido de entregas proporciona, a todos os membros envolvidos

no projeto, a avaliar e entender os requisitos de um projeto em

crescimento (Astels, 2002).

36

4) Desenvolvedores e pessoas ligadas ao negdcio trabalham em

conjunto diariamente no projeto.

A colaboragfo dos stakeholders, na integragio direta com o projeto, pode
apoiar fortemente todo o processo da Engenharia de Requisitos,
prevenindo os problemas causados pela falta de comunicagio (Rising,
2002).

Os requisitos sfio analisados e discutidos sob os dois pontos de vista
negécio (cliente) e tecnologia (desenvolvedor).

A substituigio de um documento formal, constitufdo de uma cole¢ao de
requisitos detalhados, por requisitos com um alto nivel de abstracio,
instiveis e apoiados pela forte integragio do cliente no processo de

desenvolvimento, enfatiza um continuo comprometimento e co-autoria no

projeto de software.

5) Criar projetos cercados por pessoas motivadas, fornecendo ambiente

e suporte necessdrios para acreditarem no trabalho feito.

Sob o ponto de vista de requisitos, existe um beneficio indireto, se fatores
sociais como amizade, talento, capacidade e comunicagdo forem
enfatizados. Um ambiente com estas caracteristicas proporciona uma
grande fonte de oportunidade de obter produtividade, agregando a
utilizagdio e desenvolvimento das capacidades individuais, formando uma
comunidade sincronizada na solugio dos problemas e focada nos
objetivos (Cockburn,01). A qualidade dos requisitos emerge em um

ambiente com essas caracteristicas.

6) O mais eficiente e efetivo método de transmitir informacbes para e

entre uma equipe de desenvolvimento é a comunicagdo verbal face-a-

face.

37

A comunicagdo face-a-face diminui a necessidade de documentacio
formal. O conhecimento e as necessidades s@o transferidos com maior
velocidade, facilitando o aprendizado e a realimentacfio dos requisitos.

O conhecimento ticito ndo pode ser transferido diretamente da mente de
uma pessoa para o papel. Pode ser transferido, com mais efetividade,
através de um relacionamento com a pessoa que possui 0 conhecimento.
A razdo para isto, € que o conhecimento nfo € composto apenas pelos
fatos em si, mas pelo relacionamento entre os fatos — isto é, como as
pessoas combinam certos fatos para demonstrar uma situagfo especifica
(Fowler, 2002).

A documentacgio nfo deve ser totalmente descartada, mas deve-se

procurar o balanceamento entre documentagéo ¢ conversagdo para atingir

0 entendimento.

7) Software funcional entregue é a medida bdsica de progresso do

projeto.

O software funcional, como métrica de progresso, apdia principalmente a
geréncia de projeto, tanto quanto o estado atual do projeto (Astels, 2002).
Também pode ser encarado como uma métrica de qualidade para os

requisitos, pois permite avaliar se os requisitos do cliente estdo sendo

cumpridos e implementados.

8) Processos dgeis promovem desenvolvimento sustentado. Os
patrocinadores, os desenvolvedores e os usudrios devem ser capazes

de manter uma harmonia constante indefinidamente.

Focar nas pessoas, criando uma responsabilidade social, pode manter a
produtividade da equipe afetando positivamente a satisfagdo no trabatho,

proporcionando pessoas alertas e criativas influindo em todo o processo

de software.

38

9) Cuidado continuo com a exceléncia técnica e um bom projeto

acentuam a agilidade.

Métodos Ageis adotam e encorajam mudangas de requisitos enquanto o
cédigo estd sendo escrito (Beck, 1999). Portanto, o projeto ndo pode ser
encarado apenas como uma atividade iniciadora para ser complementada
com a constru¢io.0 projeto € uma atividade continua que deve ser
executada por toda a vida dtil do processo. Assim, toda a iteragéo deve
possuir esforgo de projeto, através da re-fabricagdo (refactoring) para
cumprir os requisitos de qualidade, tomando o projeto e suas
implementagGes melhores, facilitando a manutenggo de forma a apoiar a

analise, testes e refinamento dos requisitos de software.

10) Simplicidade — a arte de maximizar o quanto de trabalho ndo deve ser

feito — é essencial.

Os desenvolvedores devem somente implementar aquelas fungBes que
foram aceitas pelos clientes e focar em sua real necessidade e nada mais
(Beck, 1999). Apesar de o conceito de simplicidade ser um pouco

subjetivo, ele deve ser satisfeito sob os dois pontos de vistas envolvidos: o

do desenvolvedor e o do cliente.

11)As melhores arquiteturas, requisitos e projetos surgem de equipes

auto-organizadas.

Equipes que atingem a capacidade de se auto-organizar €,
conseqitentemente, se adaptar com equilibrio a mudangas de requisitos e
eventos externos, conseguem atingir uma melhor exceléncia no produto

de software sob as 6pticas de projeto, arquitetura e requisitos (Cockburn,

2001).

39

12) Em intervalos regulares, a equipe reflete em como se tornar mais

efetiva, ajustando-se em comum acordo.

A efetividade reflete a capacidade de absorgio de mudangas e produtividade
evidenciadas a cada ciclo iterativo (Cockburn, 2001). Essas qualidades sdo
direcionadas pela caracteristica da adaptabilidade do processo e da equipe a dindmica

das perturbagdes de origem externa e interna com relagdo ao processo ideal de

desenvolvimento do produto.

3.3 Principais Métodos Ageis

Uma pesquisa realizada por Charette (2002), com 200 gerentes IS/IT, sobre as
utilizagBes de métodos cldssicos € Métodos Ageis de desenvolvimento de software,

revelou que 54% possuem algum tipo de experiéncia com Métodos Ageis. A

pesquisa apresenta os seguintes nimeros:

Empresas estdio distribuidas na seguinte proporgio: 33% América do Norte,
20% Europa, 10% Austrélia, 8% india, 8% Asia e 21% restantes divididos

pelo Oriente Médio, Africa e América do Sul.

Com relagdo 3 atividade, ficaram divididas em 39% empresas de software,
11% financas, 9% consultoria, 6% governamental, 5% telecomunicagdes, 3%

bancos, 2% utilidades, 1% transportes e outras 15 categorias com 24%.

A pesquisa também categorizou as empresas por receita: 13% com mais de
US$ 1 bilhdio, 17% entre US$100 milhdes e US$ 1 bilhdo, 33% entre US$5
milhdes e US$100 milhdes e 37% com menos de US$S milhdes.

Conforme a figura 9, os Métodos Ageis mais utilizados sfio: Extreme Programming
38%, Feature-Driven Development 23%, Adaptive Software Development 22% ¢

Dynamic Systems Development com 19%. Segundo a pesquisa, muitos dos gerentes

40

responderam que utilizam ou j& utilizaram mais de um método nas suas organizagdes

(Charette, 2002).

Percentage of respondents

Figura 9 - Métodos Ageis utilizados na Indistria de Software (Charette, 2002)

Segundo Cockburn (2001), o encontro, onde se definiram os valores e principios do
Manifesto da Agilidade, foi promovido por vérios metodologistas que buscavam uma
estrutura comum entre os processos que praticavam. Os métodos que estavam
formalmente representados no encontro eram: Extreme Programming (XP), Adaptive
Software Development (ASD), Dynamic System Development Method (DSDM),
Scrum, Crystal e Feature Driven Development (FDD). Esses métodos, por serem

precursores € estarem entre os mais utilizados (Charette, 2002), serdo detalhados a

seguir,

41

3.3.1 Extreme Programming

Extreme Programming provavelmente hoje é o Método Agil que possui maior
destaque neste tipo de desenvolvimento. Nascido de um projeto para o sistema
Chrysler Comprehensive Compensation, codinome C3, pela necessidade de entregar
o software o mais rdpido possivel, Kent Beck, Ward Cunningham e Ron Jeffries

criaram um método que explorou os extremos de certas praticas de desenvolvimento,
criando o método chamado Extreme Programming (XP).
O XP ¢ baseado em quatro valores fundamentais (Beck, 1999):

- Comunicagédo

- Avaliagdo

Simplicidade

Coragem

i

Basicamente, as priticas recomendadas pelo método sdo baseadas em préticas
antigas e testadas, algumas até esquecidas, em planejamento de processos. O XP

utiliza-as de uma forma colaborativa e iterativa, centrando as pessoas como foco

principal do método.
O XP define como suas atividades principais (Astels, 2002):

Trabalhar com seus clientes. O cliente deve fazer parte da equipe de
desenvolvimento, pois a ele € atribuida a capacidade de resolver as ddvidas e

tomar decisdes relativas a prioridade de recursos e riscos.

Metdforas. S#o utilizadas para conceitos abstratos e dificeis, fornecendo uma

estrutura de conceitos e terminologias comuns para ser compartilhada e

entendida por todos os membros da equipe.

42

Planejamento. E efetuado o planejamento a cada iteragiio (entre 1 a 3 semanas),
evitando intervalos mais longos, diminuindo a imprecisdo do planejamento conforme
os requisitos sfo alterados e os riscos vao sendo identificados. Caso existam duvidas
ou inexperiéncia com relacio as estimativas para o planejamento da iteragio, recorre-
se a uma exploragdo rapida, em termos de programagio, sobre uma ou mais user
stories que a equipe de desenvolvimento julgue necessdria. Essa exploragio chamada
de spike, possui como objetivo principal fornecer uma estimativa mais acertada para
o planejamento da iteragdo ¢ nfio apenas para o cédigo, sendo encarada como uma

rdpida prototipagfio sob a perspectiva da equipe de desenvolvimento.

Reunides Rdpidas. S&o realizadas reunides didrias, curtas e produtivas para a

avaliacfio das atividades completadas no dia anterior, além dos problemas e

dos obsticulos encontrados.

Testes. E dada uma grande énfase nos testes. Ao escrever o cédigo de uma

fungfo, o seu cidigo de teste deve também ser escrito. Todos os testes devem

sempre ser executados para qualquer alteragdo daquela fungéo.

Simplicidade. Manter o projeto simples e claro fornece condigfes de deixa-lo

4gil e maledvel, possibilitando a acomodagio de novos requisitos conforme as

iteragfes prosseguem.

Programagdo em Pares. Toda linha de cédigo deve ser escrita por um par de
programadores, agrupados em piloto e parceiro. O piloto é responsdvel pela
escrita dos cddigos, testes, integragdo ou re-construcdo (refactoring) do
cédigo, enquanto o parceiro observa o cédigo, tendo em mente os objetivos

estratégicos, encontrando erros ¢ oferecendo idéias e sugestdes.

Utilizacdo de Padrdes. Adotar um conjunto de padres de c6digo no nivel da

equipe.

43

- Codigo Coletivo. O cbdigo existente no projeto € da propriedade de todos os

membros da equipe e qualquer membro pode manipular um cédigo existente.

Integracdo Continua. As fungBes concluidas ao final de cada tarefa devem
ser integradas ao produto de forma continua, minimizando conflitos e

obtendo convergéncia para um produto funcional.

- Re-Construgdo (Refactoring). Promover a alteragfio do sistema em sua
estrutura interna sem alterar seu comportamento externo, de forma

disciplinada, objetivando a clareza do cédigo e sew melhoramento continuo.

Entregas em incrementos pequenos. Colocar as fun¢des nas mdos dos

verdadeiros usuérios, buscando avaliacfio e identificagdo de novos requisitos

o mais breve possivel.

Semana de 40 horas. Promover a qualidade de vida dos membros da equipe,

evitando grandes jornadas seguidas de trabalho.

Adotar as alteragdes. A equipe de desenvolvimento deve permanecer

flexivel, aceitando normalmente as altera¢des de requisitos.

O método Extreme Programming divide as equipes de trabalho, dentro do processo

de desenvolvimento, em duas familias: a equipe de desenvolvimento e a equipe do

cliente.

Equipe do cliente: Os membros definem quais necessidades funcionais devem
ser agregadas ao sistema e também sio responsiveis pelos seus testes e pela
aceitagdo. A equipe do cliente deve ser mais ampla que um grupo de usuérios
do sistema, sendo necessérias varias habilidades dos seus integrantes, para
que possam atuar de forma constante e cooperativa no processo. Os papéis

necessarios para essa equipe sdo (Astels, 2002);

44

Contadores de Histérias: Os contadores de histérias s3o pessoas que
possuem especializagdo no dominio onde o software seré construido e
sdo responsdveis por escrever as user stories (correspondem aos casos
de uso com um escopo simplificado e reduzido). Os contadores de
histérias sfio as pessoas a quem os membros da equipe de
desenvolvimento recorrem quando necessitam de algum

esclarecimento sobre os requisitos do sistema.

Aceitantes: Podem ser os contadores de histérias ou pessoas que agem
em seu nome para executar os testes de aceitagdo. Os aceitantes

garantem que cada release corresponda Aas expectativas dos

contadores de historias.

Patrocinadores: Os patrocinadores, ou proprietdrios do ouro, como
Beck (1999) literalmente designa, sdo os provedores de recursos para
o projeto, garantindo que o projeto tenha pessoas, financiamento e

equipamentos adequados. Correspondem as pessoas que buscam valor

no projeto para seu negoécio.

Planejadores: Os planejadores sdio as pessoas que veem as
necessidades de distribuir as fungdes pretendidas do sistema. S&o as
pessoas que conhecem os ciclos do negécio envolvido e os seus
relacionamentos. Existe um equivalente na equipe de

desenvolvimento que é o acompanhador.

Chefe: O chefe & a pessoa que lidera o sistema, é responsivel por.
verificar se existe um equilibrio entre as forgas e recursos
participantes no projeto. Ele garante que os trabalhos sejam
concluidos ¢ os caminhos organizacionais estejam livres. Acaba
atuando nas duas equipes, garantindo para o patrocinador que o

projeto obtenha o valor esperado para o negécio.

45

- Equipe de Desenvolvimento: E constituido por responsdveis por estimar
tarefas, ajudar os clientes a se conscientizarem sobre as conseqiiéncias de
suas decisdes, adaptar seus processos, construir e entregar o sistema. Os

papéis necessérios para esta equipe s30:

o Técnico: Com um perfil experiente, ele agrega sva experiéncia ao
projeto e € responsavel por garantir que o processo flua normalmente.
Ele identifica se existe a necessidade da adaptacio do processo e

promove a cooperagéo da equipe nesse intuito.

o Acompanhador: Responsivel por avaliar as estimativas feitas pela
equipe de desenvolvimento e¢ medir o tempo real para concluir
determinado trabalho, tornando-se uma realimentaggo para as futuras
estimativas. Também monitora a velocidade da entrega de software
funcional para o cliente e as mudangas requeridas, sendo responsével

pela comunicacfio das alteragdes a toda equipe de desenvolvimento.

o Facilitador: Pessoa com perfil comunicativo e capacidade de relages
interpessoais. Seu papel € facilitar o relacionamento entre as duas
equipes. Quando existe conflito entre as equipes em fungéo de alguma

distorcdo na comunicagdo, seu papel € encontrar situagGes

conciliadoras e comunicar de forma eficaz o que € necessirio para

atingir o resultado.

o Arquiteto: Produz a arquitetura e faz seu refactoring conforme a
necessidade. Responsdvel por escrever os casos de teste de mais alto
nivel para cobrir a arquitetura necesséria para dar suporte 2 iteraggo,
também observa o cédigo produzido, agregando sua experiéncia no

refactoring do cédigo e auxiliando os desenvolvedores.

Uma das principais caracteristicas do Extreme Programming ¢ definir um alto valor

para a satisfagfio do cliente. Para atingir esse objetivo, o XP busca a integraciio do

46

cliente na equipe e proporciona realimentagles constantes e freqiientes sobre o
produto entregue. Qutras fontes importantes de realimentagdes sdo 0s testes,
executados j4 nas fases iniciais da iteracdo e com a participagdo ativa do cliente.
Desta maneira, entrega continua de software funcional, colaboragio, intensa
comunicagdo e participagio efetiva do cliente praticados no XP desenvolvem

condi¢Bes favordveis que proporcionam os programadores a responderem de forma

rapida e efetiva as alteragdes de requisitos do cliente.

A seguinte figura define o fluxo do processo de desenvolvimento em Extreme

Programming (Wells, 2002).

{eranas)
o Teser
auas Lher Staney Refinaremo
ey
¥ ; r
User | equves] Planejamento | paco a Gums | Testos Pequenos
Storles | doRalksasas [Reeascs lieragho Acsitagtio S ? Releases
3 3
MeAdfoms Proxima
e
Spike
Plamejarnento
Aspitatura

Figura 10 - Processo Extreme Programming - adaptado (Wells, 2002)

3.3.2 Feature Driven Development

O método Feature Driven Development (FDD) foi inicialmente desenvolvido por
Jeff De Lucca e Peter Coad e, de forma semelhante a outras metodologias
evoluciondrias ¢ adaptativas, foca em ciclos rapidos de desenvolvimento com entrega

de funcdes tangiveis para os clientes. Baseia-se em cinco atividades principais (Coad,

1999):

Desenvolver um modelo global. Os clientes apresentam um escopo de alto

nivel do sistema e seu contexto através de walk-throughts. A equipe de

47

desenvolvimento, em conjunto com os clientes, constréi um esqueleto do
modelo do software necessdrio. Grupos especializados das equipes do cliente
e do desenvolvedor adicionam, no modelo, caracteristicas pertinentes

conforme seus pontos de vista, fornecendo uma visdo global a todos os

envolvidos.

Construir uma lista de funcdes. As equipes identificam as fungGes e as

organizam, agrupando-as, hierarquizando-as, priorizando-as e atribuindo

pesos relativos.

Planejar por fungdes. Através da lista de fungSes hierarquizada, priorizada e
com pesos atribuidos, sio estabelecidos marcos para as atividades iterativas
do processo que sio: Projetar através das fungdes e Construir por fungdes,

normalmente compreendidos em ciclos curtos de duas semanas.

Projetar através das fungées. As classes comuns do projeto sdo identificadas
e os responsdveis pelas classes designados; as equipes, de desenvolvedor ¢
cliente, detalham as fungbes através de diagramas de seqiiéncia. Os
responséveis pelas classes, que sio membros da equipe de desenvolvimento,

escrevem seus modelos ¢ seus métodos, com a inspegéio do modelo sendo

efetuada pela equipe de desenvolvimento, de forma geral.

Construir por funcdes. Os responséaveis pelas classes geram os casos de teste
unitdrios e das classes. Ap6s o cédigo ser implementado com sucesso ¢
inspecionado, a equipe faz a inspe¢do das classes envolvidas. Caso sejam
aprovadas, todas as classes de uma determinada fungdo sio promovidas para

o produto principal, focando a entrega de versdes de software funcionais de

valor para o cliente.

O FDD é um processo altamente iterativo e orientado a resultado que objetiva

habilitar equipes a desenvolver software de valor para o usudrio, rapidamente sem

48

comprometer a qualidade do produto. Trata-se de um processo que busca focar as

pessoas em detrimento da documentago.

O FDD foi projetado para equipes pequenas, mas pode ser escaldvel para grandes
equipes. A equipe consiste de pessoas que possuem experiéncias e competéncias
distintas de modo que se completem de forma colaborativa. Nesse sentido, pessoas

de desenvolvimento e pessoas ligadas ao negécio devem trabalhar em equipe (Coad,

1999).
Eﬁf:;gg‘;ﬁr) Gesar uma liste =N Planzjar Projatar par | Constrlr por
global ¥ de Funges 1 por Fungbes - Fungiag e Fungbes:
Mol anoatiual Urra Jista 45 unglien Lem pan da desenyiivitanie Lty pvate de prajeld Fenghas o Viakr
ogjnipsrdag sy eonjisiks & Ristsipongdioale tias tnccap {REqUSncIas; bz ¢ Cliar
S DOTLTS Reemongdvais fungdes
agrigse mais contedihy
s mod ot g sijrios

Ut srenfedn g obijates -

Figura 11 - Processo Feature Driven Development - adaptado de (Coad, 1999)

3.3.3 Adaptive Software Development

Desenvolvido por Jim Higsmith, o método Adaptive Software Development (ASD)
foi criado para projetos que séo caracterizados pela sua alta velocidade de entrega de
produtos funcionais, mudangas freqilentes e incerteza de requisitos. O foco requerido
no produto necessita de um método iterativo, porque o resultado de cada iteragdo
contribui fortemente para o direcionamento do processo (Cockburm, 2001). O método

segue um ciclo de vida dinfimico baseado em trés principais atividades:

Especular: Um planejamento requer um certo grau de certeza para atingir os
objetivos desejados. Como Highsmith (2000) afirma, adaptagio & necessaria
no novo mundo, onde mudangas, improvisagdo e inovagdo reinam. Em tal

ambiente é dificil planejar para gerenciar projetos em diregoes inovadoras.

49

Esta € a razdo pela qual Highsmith (2000) prefere o conceito especulagdo. A
especulacio consiste da iniciagdo do projeto e do planejamento do ciclo. A
especulagdo ndo elimina o planejamento, mas as incertezas sdo agregadas,
através do encorajamento da exploragio e experimentagdo. Por isso, adotam-

se ciclos curtos de entrega de software funcional e iteragdo das atividades

para atingir esse objetivo.

Colaborar: Quando aplicagbes complexas sdo desenvolvidas em um
ambiente turbulento, o volume do fluxo de informacéio e a demanda pelo
conhecimento dos requisitos sdo altos. Este tipo de ambiente necessita de alta
colaboragfio para o gerenciamento efetivo do ciclo de vida do projeto. Em

ASD, a colaboragio e o paralelismo sio as palavras chave para desenvolver

componentes funcionais.

Aprender: Aprendizado vem como resultado da realimentagfo capturada das

revisfes de qualidade do produto. Os resultados levantados de cada iteragdo

realinham as atividades, objetivos e expectativas das equipes.

O ASD é caracterizado pela capacidade de absor¢fio da mudanca de requisitos,
reavaliagio continua do processo ¢ intensa colaboragdo entre desenvolvedores,
testadores e clientes. Em ambiente de incertezas, pessoas colaborativas sdo

necessarias, sendo a comunicagio o canal mais importante para identificar problemas

¢ encorajar as equipes na soluc@io (Highsmith, 2000)
Cada iteragiio, chamada de ciclo adaptativo, deve possuir as seguintes propriedades:

Baseada na visdo do projeto € guiada pela missdo, ndo como um destino fixo,

mas como limite do projeto;

Dirigida a resultado, por exemplo, um componente construido no lugar de

tarefa cumprida;

50

- Limitada no tempo;
- Considerada como uma pequena parte de um conjunto maior de iteracdes;

- Direcionada pelo risco;

- Tolerante a mudangas, encaradas como uma oportunidade para aprender o

obter vantagem competitiva.

A figural2 exemplifica o processo em ASD.

i X

]
ESPECULAR | COLABORAR |

I i i ‘ ¢
D) g | APRENDER |
I i ! I
¥ f l |
i . Paratelismo Revisag {
Plarajpmento Flanejamenit Ravisao
I ! e it o artharia | Qualidade 1
i Clclo Ciclo Cﬁzrngponmtas Cualldare Finat 1
i |
i]
] {
H H

Figura 12 - Processo Adaptive Software Development - adaptado de (Highsmith, 2000)

3.3.4 Dynamic System Development Method

O Dynamic Systems Development Method (DSDM) surgiu na Inglaterra em 1994,
em um consércio de companhias do Reino Unido que visavam construir um RAD
agregado ao desenvolvimento iterativo. O ciclo de vida do Dynamic System

Development Model (DSDM) ¢ iterativo e incremental, consistindo de cinco fases

(Easton, 2002):

- Estudo de viabilidade

- Estudo do negécio

51

- Iteragdo do modelo funcional
- Iteragdo do projeto e construg¢do

- Implementagéo.

O método inicia com estudo de viabilidade e do negécio, verificando se 0 DSDM €
apropriado ao projeto. O estudo do negdcio é uma colegio de workshops curtos para

entender a drea de negécio onde o desenvolvimento acontecerd. Como resultado,

propde o esbogo da arquitetura do sistema e de um plano de projeto geral.
O restante do método € formado por trés ciclos sobrepostos (Easton, 2002):

Ciclo do modelo funcional, que produz documentacéio de anélise e protdtipos;

Ciclo de projeto e construgfio, que cria o sistema funcional para o usudrio;

Ciclo de implementagiio, que controla a implantagdo do sistema para uso

operacional.

As atividades nas iteragBes dos ciclos sfio baseadas nos seguintes principios:

O envolvimento do cliente € imperativo.
- As equipes devem possuir capacidade de decisdo.

- A entrega de produtos para o cliente é freqiiente.

- Critério essencial de aceitagiio de produtos é o valor para o cliente sob o

ponto de vista do propdsito do negécio.

- Desenvolvimento iterativo e

incremental €

objetivos da solugdo para o negécio.

-

32

necessirio para atingir 0s

- Todas as mudancas durante o desenvolvimento sio aceitas.

- Requisitos de alto nivel so delineadores para o projeto.

- Testes e integragdes ocorrem por todo o ciclo de vida.

envolvidos no projeto.

A figura 13, exibe o processo em DSDM.

E essencial o clima de cooperagio e colaboragdo entre todos os stakeholders

i i]

i v Lid |

f Criar ! Criar |

(|| Funcionaitades f-- ﬁg@; ! Piojelo e m‘fwﬁ ! Revist la—] implemeniar
e || 3% S T

Negico |1 dentiicar ! Revisa faanlfica !
1 Revisar h 1 r J f Aceita Trainamenio
E S : Protéipo] Fungionalidades : Ppra'?iﬁ‘;];’u -] Pijem ; Clante i Hausnios

i i i

i i 1

: T t_L.J 4 !

13 1 1

I ITERAGAO PARA O MODELD I ITERAGAQ PARA O : ITERAGAQ FARA

E FUNCIONAL ! DESENVOLVIMENTO H IMPLEMENTACAQ

Figura 13 - Dynamic Systems Development Method - adaptado de (DSDM, 2001)

Seus ciclos sio focados em principios de desenvolvimentos ageis, como a

participagdo ativa do cliente, entregas freqiientes, programa de testes nas iteraces,

ciclos curtos nas iteragdes (duas a seis semanas). O método busca dar énfase na

qualidade e adaptatividade do método para requisitos varidveis e inconstantes.

O DSDM se destaca por basear-se na infra-estrutura de metodologias cléssicas e

mais maduras, porém seguindo os principios e caracteristicas dos Meétodos Ageis.

53

3.3.5 Crystal Family

Diferentes projetos requerem diferentes métodos e Crystal pretende fornecer uma

solugdo para essas diferentes necessidades.

Crystal é um processo orientado a pessoas para desenvolvimento de software, focado
na idéia de que sio as pessoas que fazem o sucesso do projeto. Ferramentas, produtos

e processos existem apenas para apoiar o componente humano e as pessoas ¢ 08

métodos devem ser centrados na comunicagio.

Outra caracteristica do conjunto de métodos Crystal é o reconhecimento das
diferencas culturais humanas, encorajando o aspecto da alta tolerdncia, que pode
proporcionar a equipe a incorporar partes de outros métodos que julgue necessério,

por exemplo Extreme Programming (XP) (Cockburn, 2001a).

Crystal Family classifica seus métodos em Clear, Yellow, Orange, Red, Maroon e
Violet, em fungfio do tamanho e da criticidade do sistema a ser desenvolvido.
Projetos de grande porte necessitam mais coordenagdo e metodologias mais pesadas
do que projetos de pequeno porte. Cada um desses métodos € projetado para um

determinado tamanho de equipe, de modo a orientar sobre suas necessidades de

organizacio e estratégias de comunicagao.

A figura 14 indica o potencial de perda causado por uma falha de sistema,
classificando em: Confortivel (C), Custo Moderado (D), Custo Essencial (E) ¢ Custo
de Vidas (L). Para cada nivel de criticidade existe um niimero méximo de pessoas
recomendado no processo. Assim, por exemplo, D40 representa um projeto com um

méximo de 40 pessoas envolvidas entregando, um sistema com uma criticidade

maxima de um custo moderado.

54

rl— Prioritized for Legal Liability — | []
Prioritized for Productivity & Tolerance

Life L

(L) | o

Leé L20 L40 Ligo L200 | L500 11000 |

Essential L]

morney i
(E) |E6 E20 |Es0 [E108 |E200 |ES00 |E1000 [|

ity

Critical
(defects cause loss of...)

Discretionaty ; |
money
@) (D6 [p20 |Dio |proo |D200 D500 |D10G0

Comfort a
© Cs C20 ci6 dcloo lczo0 |csoo |cleoo |

1-6 -20 -40 -100 -200 -500 -1,000
Number of people involved +20%

Y

Figura 14 - Classificaciio Crystal Family (Cockburn, 2001a)

Apesar de todos os métodos que compde a Cristal Family seguirem 0s mesmos
valores e principios, setd destacado o método Clear pela sua maior similaridade com
os Métodos Ageis listados, no presente trabalho, e em fungéo de ser talhado para

pequenas projetos e equipes concentradas em um mesmo ambiente de trabalho.
As seguintes préticas sdo aplicadas durante o processo (Cockburn, 2001a).

Produto funcional em entregas incrementais regulares

Medigdo de progresso do projeto baseado no software entregue

- Envolvimento direto do cliente

- Automagio de testes de fungdes

Workshops sobre o produto e refinamento do método no inicio € na metade de

cada incremento.

55

As seguintes atividades estdo envolvidas no processo (Cockburn, 2001a):

- Simulacdo (Staging): Corresponde ao planejamento da préxima iteragéo do
sistema. Deve ser concebido para produzir releases do produto funcional em
cada trés ou quatro meses no méximo. A equipe seleciona os requisitos a

serem implementados nos incrementos ¢ planejam suas entregas.

Revisdo e Investigacdo. Cada incremento contém vérias iteragdes. Cada
iteragdo inclui as seguintes atividades: construgo, demonstragdo e

investigacdo dos objetivos do incremento.

Monitoracdo. O progresso é medido conforme as entregas de produtos

funcionais durante o processo de desenvolvimento.

- Paralelismo. Miiltiplas equipes podem proceder com o paralelismo das

atividades desde que a monitoragdo da estabilidade do processo forneca

resultados para isso.

- Refinamento do Processo. A cada incremento, a equipe de projeto pode

aprender e utilizar o conhecimento obtido para refinar o processo para o

préximo incremento.

Pessoas com perfis distintos sdo necessérias nos vérios papéis que o método exige: o
patrocinador, o analista-programador sénior, o analista programador e o cliente, que
deve ser um membro da equipe. A esses papéis sdo atribuidas responsabilidades
como: elicitacdio de requisitos, anélise, programagio e coordenagdo do projeto, que
normalmente fica a cargo de um especialista no dominio do negdcio, . Tanto pessoas

com perfil técnico como de negdcios devem estar presentes nestes pap€is e na

equipe.

O método busca a entrega freqilente de software funcional através de um

desenvolvimento incremental. O intervalo de tempo de um incremento recomendado

56

é entre um a trés meses. As revisdes ao final das iteragdes sdo fortemente enfatizadas

no Crystal.

Uma das vantagens de um método com iteragbes curtas € a possibilidade do
surgimento das dividas e dos problemas nas fases mais prematuras do projeto,
facilitando a corregdo e o ajuste do projeto na diregdo correta. Para que isto ocorra, 0
método necessita que os participantes monitorem e melhorem o processo, atribuindo

ao processo a qualidade da adaptabilidade.

O Crystal Clear descreve o acompanhamento do progresso através de marcos que
consiste de entrega de software ao invés de algum tipo de documentagéo formal. A
documentacdo de projeto é definida como necesséria no método, mas seu contetdo ¢

forma nio sio detalhados no método, atribuindo aos membros das equipes a decisdo

sobre a documentagfio que acharem necessdria ao projeto.

O usudrio também é envolvido no método Crystal Clear; seus pontos de vista na

entrega do sistema funcional a cada iteragdo sdo encarados como atividades de

revisdo no projeto.

O método também utiliza workshops e reunides ripidas para o refinamento do

produto e do processo, que normalmente sdo executadas no inicio e na metade de

cada iteragao.

A figura 15 apresenta o processo Crystal de forma genérica.

h 4
Stnging
e o oodanen | taages [IEECH Relowse
F 3
f ¥ ?

. _ Conshrugin
Paraltelismo Monitoracao Bemonstragio

57

Figura 15 - Processo Crystal Family - adaptado de (Cockburn, 2001a)

3.3.6 Scrum

O método Scrum foi referenciado pela primeira vez como um método
desenvolvimento de um produto no artigo “The New Product Development Game
(Harvard Business Review 86116: 137-146, 1986)” e mais tarde detalhado em “The
Knowlodge Creating Company (Oxford University Press, 1995) Ikujiro Nokata,
Hirotaka Takeuchi”. Baseado em suas idéias e com a colaboracio do Departamento
de Pesquisas Avangadas da DuPont, Scrum foi oficialmente descrito e apresentado

no encontro do grupo de Gerenciamento de Objetos em 1995 (Beedle, 2001).

O Scrum possui dois conceitos bésicos: adaptabilidade e a autonomia da equipe. A
adaptabilidade refere-se 4 capacidade de equilibrio que a equipe demonstra com
relagdio a distdrbios de origem externa ao processc. A autonomia se refere as equipes
capazes de decidir seus rumos no projeto. Os gerentes do projeto determinam o
trabalho a ser feito, mas as equipes decidem de que forma ser4 executado o trabalho
a cada incremento. A tarefa do gerente é proporcionar liberdade necesséaria para que
as equipes possam trabalhar, identificar e remover os pontos de ineficiéncia que
restrinjam suas capacidades na produtividade no projeto. As equipes praticantes do
Scrum fazem diariamente reunides curtas e rapidas, proporcionando uma

realimentagdo direta a todos sobre o andamento do projeto, reduzindo uma grande

quantidade de burocracia gerencial (Janoff, 2000).

Na opinido de Schuwaber (2001), observar a interacfo entre os membros da equipe é
a melhor forma para entender a complexa interacdo entre pessoas, tecnologia,
necessidades, interesses e satisfacdo. A unifio das pessoas acaba promovendo a

colaboracfio e participagio efetiva no projeto, promovendo tantc 0 grupo como o

individuo a trabalhar em equipe.

58

O Scrum ap6ia-se no desenvolvimento iterativo e adaptével. Os projetos sdo
divididos em sprints que formam as iteragdes, cada uma com aproximadamente um

més de duragio.

Apds cada sprint, tanto a equipe de projeto como 0Os stakeholders envolvidos
reinemn-se para avaliar a iteragdo. As atividades e os resultados da iteragdo sdo
revisados ¢ aquilo a ser feito no préximo sprint é planejado.Para cada novo sprint, a

equipe identifica as atividades prioritérias e as reclassifica, iniciando um novo sprint.

A cada sprint deve ser entregue, pelo menos, uma funcionalidade de valor ao cliente

para sua avaliacio.

Durante o sprint, reunides diarias sfo efetuadas com duragdes de 15 a 30 minutos

objetivando:

- Focar o esforgo nos itens das atividades priorizadas.
- Comunicar os itens das atividades aos membros das equipes.
- Informar a todos sobre os avangos e obsticulos.

- Remover os obstculos o mais breve possivel.

Apontar o progresso na entrega das funcionalidades, direcionar € minimizar o

risco de projeto.

A realizagdo didria de reunides ao longo do projeto aponta O sucesso ¢ 2
transparéncia do projeto, proporcionando beneficios como deixar claro, para todos 0s
membros da equipe dentro do contexto do projeto, as metas gerais e individuais de
cada um. A transparéncia, também proporciona uma redug@o na quantidade de tempo

gasto em atividades que se preocupam com o jogo politico dentro do projeto (Janoff,

2000).

59

O método, de forma geral, procura:

Dividir o projeto em pequenas séries adaptdveis € maledveis.
- Progredir enquanto os requisitos nfio sdo estdveis.

- Deixar toda informag&o visivel para todos.

- Ter a comunicagfo como chave do sucesso para a equipe.

- Entregar, aos clientes, produtos tangfveis em incrementos.

Desenvolver uma cultura de confianga e engajamento do cliente junto com a

equipe de desenvolvimento, buscando o sucesso do projeto.

O Scrum requer individuos comprometidos com a equipe ¢ 0 projeto, enquanto que
dos gerentes sdio esperados a demonstragiio de confianca e o respeito para com 0s
individuos. Assim, os individuos podem se concentrar em seu trabalho, necessitando
menor quantidade de reunides, relatérios e autorizagdes. Um ambiente de trabalho
aberto e democritico onde a realimentacdo é encorajada é uma das caracteristicas do
Scrum. Assim, a tolerfincia a enganos também & praticada e absorvida. O objetivo €

utilizar a capacidade, inteligéncia e experiéncia de todos (Beedle, 2001).

A figura 16 exibe o processo do método Scrum.

60

Frmdbid
Lista
: g Funscionalidades ¢
Mess pf prosm x -
*m?;ﬁn i {Backdog List)
Fum;?:gﬁi;des : Ima;ﬁes nisgacto »| Releage Final
{Backlog) | SeEms] Testes
* '
N - S uiimativa
Prigizegdo
¢ I Eafargn
i InCPEREHOS
Planajamesio
Sprint Pradito

Figura 16 - Processo Scrum - adaptado de (Beedle, 2001)

3.4 O Processo Geral do Método Agil

Apesar de terem os mesmos objetivos de agilizar o desenvolvimento de software, os
métodos apresentados nas se¢des 3.3.1 a 3.3.6 mostram diferencas entre si. Foi feita,
neste trabatho, uma sintese de um Método Agil genérico, caracterizado através dos

principios e dos valores, considerando os Métodos Ageis definidos anteriormente.

Um Método Agil é caracterizado por 10 praticas, segundo Astels (2002):

- Modular: O processo é dividido em atividades distintas. As atividades podem
ser inclufdas no processo modular e podem ser removidas caso nao sejam
necessarias. A modularidade nio é um movimento na diregdo dos processos
de desenvolvimento personalizados. Em vez disso, ela promove a definigdo
concreta das novas atividades para que ndo se tenha um processo

inconsistente que tome diregBes que vio contra o bom senso.

Tterativo: Através de um desenvolvimento iterativo se reconhece a existéncia
de problemas e erros que deverdo ser solucionados. Como resultado, o foco

ndo é a perfeigio absoluta, mas a aprendizagem. Os erros s30 tolerados e se

permite aprender com eles.

61

Incremental: Os projetos sio criados em pequenas partes, evitando algum tipo
de solugiio radical. Como resultado, se adquire uma realimentagio sobre as

partes pequenas, 0 que permite refinar a entrega do produto principal.

Limitado no tempo: Cada incremento tem uma duraggio fixa. A mudanca das
datas ndo é aceita. £ preferivel reduzir o escopo da iteragio, em vez de

permitir que a data de concluséo seja alterada.

Parcimonioso: Os processos dgeis exigem um mimero minimo de atividades
necessdrias para diminuir os riscos e atingir seus objetivos. Exigindo um
minimo de atividades, um processo 4gil permite que os desenvolvedores se

concentrem e atendam os cronogramas rigidos sem desgaste.

Adaptdvel: A medida que o desenvolvimento continua, novos riscos podem
ser encontrados. Para lidar com esses riscos, talvez sejam necessérias novas
atividades. Um processo 4gil permite tanto que essas novas atividades sejam

incluidas como permite que as atividades existentes sejam modificadas

conforme a necessidade.

Convergente: Essa pritica declara que todos os riscos necessarios foram
assumidos. Apés cada incremento, o sistema estd mais proximo do seu
objetivo final, convergindo para uma solugio, focando a arquitetura e 0

projeto como dois pontos-chave para manter a convergéncia.

Orientado a Pessoas: Os processos de software 4geis funcionam methor com
equipes pequenas. Uma equipe pequena promove um forte espirito de grupo e
a sensagdo de que cada pessoa € importante € ndo apemas uma peca
descartivel em um grande processo. Isso fornece poder aos desenvolvedores
para que eles facam parte da evolugfio do processo € melhorem sua prépria
produtividade, qualidade e desempenho. Uma equipe pequena toma as

comunicacBes mais ficeis. A medida que a equipe cresce, a comunicagio se

62

torna um desafio maior. Quando isso acontece, a equipe precisa se dividir em
equipes menores. No entanto, a abordagem orientada a pessoas € mais do que
simplesmente criar equipes pequenas; é fundamental entender que pessoas

competentes e motivadas em um ambiente produtivo entregam bom software.

Colaborativo: A comunicacio é de importncia vital para todo o processo de
desenvolvimento de software e é incentivada pelos Métodos Ageis. Todos 0s
participantes tém de entender como as diversas partes se completam, qual o

significado dos requisitos, e trabalhar de forma cooperativa para atingir o

objetivo.

Complementar: Determinadas atividades fornecem realimentacdo quando
combinadas com outras em um processo. Para atingir a complementag&o nos
processos de desenvolvimento de software, as atividades que atuam bem

unidas quase sempre sdo uma parte fundamental para criar a dindmica que

leva ao sucesso.

As dez préticas descritas estdo presentes em cada um dos Métodos Ageis descritos

com maior ou menor destaque, conforme suas caracteristicas de desenvolvimento.

Nota-se que todos possuem algum tipo de ciclo de vida em que estdo baseados, e

possuem muitas semelhangas e caracteristicas comuns, apesar de utilizarem

taxonomias diferentes para atividades e produtos afins. Da andlise destes métodos,

pode-se identificar as seguintes caracteristicas nos seus processos:

Existéncia de uma fase de iniciagio do projeto

Existéncia de planejamento do projeto, para definir a liberagdo das partes do

sistema
Entrega de produtos funcionais consecutivos em perfodos de tempo fixados

Ciclos curtos para a entrega dos produtos funcionais, com adaptabilidade do

Processo

63

Reduciio de riscos para o projeto, através das realimentagdes fornecidas pelas

entregas de produtos funcionais.

Com base nestes dados, pode-se definir um processo genérico de um Método Agil,

ilustrado pela figura 17, com as seguintes fases:

Fase de Concepgéo

Fase de Elaboragao

Fase de Construcdo

Fase de Transi¢do

o 7 e -

PP T o e —— — - A —

;ugogagﬁﬁm_ﬁ ; Elaboragio | ;] | Construgao & Transigao |

i H :
i I T Resease 1 | Produto = R1+R2+R3.Rn
i Arquiteturs i]
I | Roigasa 2 i -
i * * i 2 ! #gnf---]R5
I 1 _ .

Iniclagho i Raquistios ; e _IL" . i

———] F i} :

I oo i Release 4 I
1 1 I Ri | R2 | R3
1 1 i !
! L $ + : f
I e |
i Plansjamenta 1)
H] Releasen |
I i I
I i I
i T H Rovisio [
I 4 }
I i |
3 t 1

Figura 17 - Processo Agil Genérico

Tem-se, a seguir, a descri¢do das fases do processo genérico:

Concepedo: Seu objetivo é dimensionar e justificar o projeto. Os requisitos de

mais alto nivel sdo estabelecidos, e normalmente definem o escopo do projeto.

64

Elaboragdo: O detalhamento dos requisitos, o planejamento e a definigdo da

arquitetura sio executados de forma paralela e colaborativa.

Os requisitos de alto nivel sdo detalhados pelos clientes, normalmente com

pouca profundidade, e os aspectos do negécio sdo transmitidos através da

verbalizagéo.

- O planejamento segue os requisitos definidos pelos clientes € a sua
priorizagio, considerando aquilo que é de mais valor para o negécio sob o

ponto de vista do cliente.

- A defini¢io da arquitetura segue em paralelo, pela equipe técnica, conforme

os Tequisitos emergem e as necessidades do sistema séo identificadas.

Construcdo e Transi¢do: sdo fases do processo em que uma parte do software
funcional é construida e entregue para o cliente, para avaliagio e realimentagéo.
O resultado devera realimentar a fase de elaboragfio para a adaptagao do processo
e avaliagio dos objetivos alcancados. Essa entrega € limitada por um escala de

tempo que deve ser suficientemente curta para que a realimentagao seja efetiva.

Todas as fases deverio estar imersas em um ambiente de comunicago efetiva e

4gil, proporcionando um alto grau de participagdo e colaborag@o.

65

4 ENGENHARIA DE REQUISITOS NOS METODOS AGEIS

Neste capitulo sio discutidos o tratamento dos requisitos nos Métodos Ageis de

desenvolvimento de software e o processo caracteristico de Engenharia de Requisitos

nestes métodos.

Em seguida, ¢ feita uma discussdo mais detalhada do método Extreme Programming,
por ser ele um dos métodos mais utilizados. E apresentada a disciplina de Engenharia
de Requisitos no contexto do Exireme Programming e a sua comparagio com duas
abordagens bastante relevantes no momento: a disciplina de requisitos do Rational

Unified Process (referenciar) e a KPA de geréncia de requisitos do modelo SW-

CMM.

4.1 Requisitos nos Métodos Ageis

Na construgio de software voltado para negécios, as mudangas de requisitos sdo
comuns (Fowler, 2002). Em ambientes onde existe a instabilidade e a mudanga
freqiiente de requisitos, a Engenharia de Requisitos deve ser capaz de estabelecer os
processos que garantam a efetividade do projeto. A utilizag@o de processos obsoletos
ou incompativeis com o dominio de requisitos do negécio pode, invariavelmente,
obrigar a disciplina de Engenharia de Requisitos a efetuar um grande esforgo na
captacio de todos os requisitos na fase inicial do projeto, resultando em requisitos

repletos de omissdes e enganos de concepgdes, ocasionando grandes problemas nos

projetos de software.

A solugZio tem sido um movimento na diregdo de modelos com perfis iterativos
(Tomayko, 2002) €, via de regra, esses processos s3o baseados em modelos

evoluciondrios como definidos em 3.3.4.

Construir sistemas competitivos com tecnologia avangada € uma tarefa complexa.
Segundo Schwaber (2002), o grau de complexidade, como demonstrado na figura 18,
aumenta conforme os requisitos sdo pouco conhecidos e a tecnologia € pouco

dominada. Se incluir uma terceira dimenséo - as pessoas, o grau de complexidade da

66

maioria dos projetos atinge pelo menos o grau de dificuldade que aponta

normalmente para o complexo.

Afastado do
Consenso

Anarquia

Complexo

Complicado

Requisitos

Simples Complicado

Préximo do
Consenso

Préamo da - Afastado da
Cenaza Tecnologia Coitsza

Figura 18 - Complexide Desenvolvimento Software - (Schwaber,02)

Em ambientes complexos, o fator risco se torna preponderante e é imperativo que o
processo de desenvolvimento esteja focado em sua minimizagéo. Riscos, segundo

Boehm (2000), séo situagSes ou possiveis eventos que podem levar um projeto a néo

alcancar seus objetivos.

Um modelo de processo de baixo risco é aquele que seja direcionado pelo risco, de
modo a determinar o processo e o produto através de uma construgio incremental do
sistema. O modelo que melhor se encaixa nesse requisito € o modelo espiral de
desenvolvimento, pois é um modelo gerador de processos direcionado pelo risco

(Boehm, 2000), possuindo duas caracteristicas principais:

- O ciclo incremental de crescimento do sistema e diminuigio gradual do risco.

- Um conjunto de marcos para o projeto, de modo a assegurar a viabilidade e o

alcance das expectativas dos stakeholders na solugdo construida para o

sistemna.

67

O processo de Engenharia de Requisitos apéia-se nesse modelo como disciplina, para

desenvolver e gerenciar os requisitos de software a ser desenvolvido.

A fregiiente inspegio e adaptagio imediata, conforme os resultados ocorrem, $30 0s
mecanismos basicos para se trabalhar com requisitos em projetos complexos. A

melhor forma de lidar com esse ambiente é utilizar implementages das seguintes

praticas (Schwaber, 2002):

- Desenvolvimento Iterativo: Freqiientes iteragGes geram incrementos de

requisitos que podem ser inspecionados para determinar o estado do projeto &

serve como base para a adaptagio do processo.

- Incrementos de Trabalho: Correspondem as versdes de sistema funcional, ao
invés de artefatos ¢ documentacdes. Esses incrementos criam uma relagéo 1:1
entre progresso e produto entregue, € proporciona um mecanismo para a

realimentacdo do cliente sobre o produto real € seus requisitos.

- Colaboragdo: Clientes e desenvolvedores formam equipes que trabalham em

conjunto, aumentando a velocidade e a qualidade da informagdo do projeto.

- Reunides didrias: Revelam a situagfo didria do estado do projeto, dos

problemas ¢ dos obsticulos a serem vencidos.

Adaptagdo: As equipes de desenvolvedores se auto-organizam diariamente,
baseadas nas reuniGes didrias, e os clientes ¢ os desenvolvedores se auto-
organizam como equipe ao final de cada incremento, movendo o projeto no

sentido de agregar o maximo valor de conhecimento e produtividade.

Emergéncia: a arquitetura, a estrutura da equipe e a descoberta dos requisitos
ocorrem durante o projeto. As equipes sio direcionadas através de visGes

esquemdticas € preliminares dos requisitos e da arquitetura, que sao

68

confirmadas ou adaptadas conforme a realimentag&io do processo

colaborativo envolvido.

Além do risco, um outro fator importante nos Métodos Ageis é tornar a mudanga dos

requisitos como uma conseqiiéncia para o aumento do valor do software do ponto de

vista do negdécio.

Quando um projeto € iniciado, a organizagdo normalmente se baseia na expectativa
do retorno do investimento, ou seja, o custo do projeto deve-se transformar em algum
beneficio ao negécio ou em um valor que seja maior que o investido. Métodos Ageis
objetivam que, ao invés dos requisitos como direcionadores do valor do negécio, o
valor possa emergir através de incrementos de software funcional (Schwaber, 2002).
Na definigiio de Fowler (2002), o software € naturalmente intangivel, é muito dificil
visualizar que o valor de uma fungdio possui, até que possa ser vista na forma real
como produto. Somente quando se utiliza uma verséo inicial de algum software é que

se comeca a entender quais fungdes possuem valor e quais ndo possuem.

O foco no valor, € ndo nos requisitos, pode ser expresso como (Schwaber, 2002):
Valor Negécio = f (custo, tempo, funcionalidade, qualidade)

Para que isso ocorra, dois ciclos de trabathos colaborativos de requisitos devem

OCOrTer em processos igeis:

- A equipe de desenvolvimento, responsével pelos requisitos de tecnologia,

gera com fregiiéncia novos incrementos de funcionalidade, com base nas

necessidades levantadas pela equipe do cliente.

- A equipe do cliente, responsavel pelo dominio do negécio, gera novos
requisitos e prioridades das fung@es do sistema, necessidades de cronograma

e expectativa de qualidade, baseados na dindmica do negécio, baseados em

um produto tangivel, entregue pela equipe de desenvolvimento.

6%

Ao final de cada iteracfo, clientes e equipes de desenvolvedores planejam, de forma
colaborativa, o préximo ciclo de desenvolvimento, baseados naquilo que ja foi
desenvolvido e nos novos requisitos de negécio que emergiram. Quanto mais rdpida
for a entrega de software funcional ao cliente em seus ciclos iterativos, mais
vantagens serdo proporcionadas em reconhecer os eventos inesperados © as
oportunidades de negécio, refinando os requisitos na diregdo de um sistema de

qualidade. A figura 19 apresenta a dindmica do processo.

Releases
Sistema
Furtcional

Figura 19 - Processo Requisitos Métodos Agels « (Schwaber, 2002)

4.2 O Processo de Engenharia de Requisitos nos Métodos Ageis

O objetivo da Engenharia de Requisitos ndio € apenas escrever um documento de
requisitos extenso e detalhado mas transferir, de forma efetiva, idéias e necessidades
do cliente para o desenvolvedor (Young, 2001). Nos Métodos Ageis, a transferéncia
de idéias é um dos maiores parimetros de efetividade. Segundo Highsmith (2000),
essa efetividade é basicamente evidenciada através de um dos seus principios — A

maior prioridade é satisfazer o cliente, 0 mais breve possivel e continuamente, com

software funcional.

Para o cliente transferir idéias, ele deve explorar o universo do discurso, a fim de
construir um modelo mental de uma situacio futura e comunicar aquela realidade
para o desenvolvedor. O desenvolvedor, ao entender o que é comunicado, deve

adaptar a sua realidade A realidade do cliente tio préximo quanto possivel. O

70

processo de captura de requisitos, a partir do ponto de vista do usudrio, € a melhor
maneira de resolver o problema de maneira correta (Clavadetscher, 1998). Como
esses dois modelos mentais nio podem ser idénticos, a tarefa principal é diminuir a
distancia entre eles. Os Métodos Ageis ndo declaram explicitamente a utilizagdo de
Engenharia de Requisitos em seus ciclos de vida, mas propdem principios extremos

para diminuir a distincia entre os dois modelos mentais e construir a ponte de

comunicagio com velocidade.

A Engenharia de Requisitos pode ser encarada como uma tentativa de construir a

comunicagio entre esses modelos. O desafio em um mercado altamente dindmico ¢

construi-la de forma rapida (Goetz, 2002).

A figura 20 estabelece uma proposi¢io para um processo iterativo e incremental de
captagio de requisitos no Método Agil, indicando as tarefas pelas quais os
stakeholders e os desenvolvedores sio responsaveis. O processo sugere o nivel de
responsabilidade que stakeholders e desenvolvedores estejam envolvidos de forma
colaborativa e interativa na identificagio de idéias ou sugestdes, na discusséo dos
requisitos potenciais, na sua modelagem e na documentagio necessdria, para que 08

envolvidos adquiram conjuntamente o entendimento do sistema ¢ suas reais

necessidades.

Como responsabilidade integral, cabe aos stakeholders a priorizagdo dos requisitos e
aos desenvolvedores a estimativa para sua implementagio. A transferéncia do
aprendizado, das experiéncias e das necessidades se dd em forma da verbalizagéo

entre desenvoelvedores e stakeholders (Ambler, 2002).

A sugestio de Ambler (2002) é que os stakeholders devam ser envolvidos na
modelagem e documentago de seus requisitos e ndo somente CoOmo provedores de
informacao, trabalhando de forma ativa no projeto, tornando as necessidades de uma

documentagio formal uma prioridade a ser estabelecida pelo préprio cliente.

71

.
B - I Estimar

Desenvolvedores N

ldfggg:ar Diseutiv 4 Woadelagent
---------- o = = o] RQQUISIEOE o e mn som v m immt mr m o o] i e — Potopelals o
Sugestdes Patenciais Documentagies
StakeH
akeHolders & o] Pricter e
F

Figura 20 - Processo de Requisitos em Métodos Ageis — (Ambler, 2002}

Aplicando este modelo de esforgo na modelagem de requisitos, acaba-se
proporcionando um engajamento dos stakeholders, com participagao no projeto e

aumentando as chances de uma colaboragfio mais efetiva,

Uma das caracteristicas dos Métodos Ageis é a preferéncia por comunicagio face-a-
face. Este processo é considerado como um canal de alta velocidade em termos de
captura de requisitos, se comparado com documentagdo formal de requisitos, cuja

obtengiio é caracterizada como muito lenta, na transferéncia de conhecimento para

uma equipe de projeto de software.

A figura 21 (Cockburn, 2001a) exibe a efetividade do tipo de comunicagéo através
de alguns meios comuns em projeto de software. O pico de efetividade de
comunicagio é para duas pessoas em um Quadro Branco ("whiteboard). A
comunicagdo face-a-face possui caracteristicas que, segundo Cockburn (2001a),
incrementam a efetividade deste canal de comunicagdio, destacando a proximidade
fisica, gestos, inflexdio vocal e perguntas e respostas em tempo real que enfatizam €
agregam o canal de comunicagdo. O documento nfio € capaz de possuir essas

caracteristicas, tornando-se muito pouco eficaz na comunicagdo entre pessoas.

* Whiteboard ou quadro branco para escrita informal, segundo Cockburn (2001a), é um ponto de
concentragiio onde a efetividade da comunicagio € a maior possivel, através do seu contetido informal,
perguntas e respostas em tempo real e compartilhamento de informaciio entre vérias pessoas.

72

Efetividade
Comunlcacio

-

(Frio} [Cuantal
Riqueza do canal de Comunicagac

Figura 21 - Efetividade de Comunicagio (Cockburn, 2001a)

A comunicacdo efetiva é um ingrediente chave para atingir o sucesso de um projeto
(Young, 2001). O processo de requisitos deve estar imerso nessa efetividade da
comunicagfio entre os membros participantes do projeto. O modelo de processo da

figura 20 pode ser complementado com a atividade de comunicagdo face-a-face por

todo o processo, como mostrado na figura 22.

&
i : :
© | Estlmar
Desenvalvedores e
[+
. 'm:a' Discutir ¥ Madelagem
-1 ——— o — — =—¢ Reguisites —————————— —_——— = —] Potencisis [~
l& 5 ' Parencials Documartages
3
StakeHolders i P

s
\

Figura 22 - Processo de Requisitos Ageis com Comunicagio Face-a-Face

73

A comunicacio s6 € efetiva em um ambiente de desenvolvimento de software onde o
espirito de colaboragdio exista. As revisbes e as realimentagGes feitas pelos
praticantes de Métodos Ageis mostram que a interagdo direta e regular com cliente é
um dos fatores chave para o sucesso do projeto. A importéncia de envolver clientes
no processo de desenvolvimento, segundo Eberlein (2002), tem sido reconhecida hai
tempos. Esse envolvimento, no entanto, pode ndo ser concretizado devido a uma
geréncia inadequada do processo de desenvolvimento de requisitos de software,
impossibilitando um clima de parceria e comprometimento. Clavadetscher (1988)
afirma que, para conseguir o comprometimento do cliente com o projeto, este deveria
participar diretamente do processo geréncia dos requisitos para assegurar que suas
necessidades estio sendo atendidas ¢ obedecendo a suas prioridades, cabendo 2
equipe de desenvolvimento apenas ajudar o cliente a obter o entendimento completo

do problema, pois somente o cliente € quem sabe 0 que sistema deve realmente fazer

para o seu negocio.

O principio do cliente on-site sugere que, pelo menos uma pessoa da equipe do
cliente, participe da equipe de desenvolvedores, na maior parte do projeto,
preferencialmente no mesmo ambiente. Sua tarefa principal € responder as perguntas
e comunicar suas necessidades 3 equipe de desenvolvimento. Ele seleciona € ordena
os requisitos a ser implementados e fornece a priorizagdo dos mesmos. O
desenvolvimento &, portanto, direcionado pelos interesses do negécio e isto ajuda a

definir o que € de valor para o cliente (Goetz, 2002).

Os requisitos organizados desta forma proporcionam que a equipe de
desenvolvimento crie objetos tangiveis, os sistemas funcionais, de forma incremental

¢ iterativa nos menores intervalos de tempo possiveis, para verificagio pelo cliente.

Este procedimento é importante, pois raramente o cliente conhece os requisitos do
sistema no inicio do projeto, estando longe de possuir um modelo completo, conciso
e ndo ambiguo que possa ser transferido ao desenvolvedor (Goetz, 2002).
Observando e sentindo o sistema entregue, ele auxilia a explorar o universo de

discurso e refinar os requisitos para o sistema de valor.

74

Essa iteragdo com um objeto tangivel fornece uma realimentag@o constante para a
equipe de desenvolvimento, gerando uma uniformizagio de conceitos e necessidades.
A figura 22, que mostra um processo de captura de requisitos nos Métodos Ageis,
pode ser expandida para a figura 23, incluindo o mecanismo de releases de software

funcional, atuando como instrumento de elicitagdio e verificagdo de requisitos.

B

'y

Estimar

a-Face >

Desenvt:_évedores 2 Rele ases

s ld"!:é‘ira‘:ﬂ | sgutiy de 2 Wodelager
& o —— = Bogladiios | m——mr —or—— < ST | Fotenclats -~
pid Sugesibes | Potencide ﬁﬁﬁ‘\uﬂleh Documentagoes
0% | §
(&
StakeHolders Fun SlOna

- : - riorizar

o

Figura 23 - Processo de Requisitos Ageis com Entrega de Software Funcional

/] Com

A especificagdo de requisitos como discutido na segfo 2.1, pode ser considerada

como uma documentacdo em um apropriado nivel de detalhe, de modo a ser

inteligivel a todos os stakeholders envolvidos.

Nos Métodos Ageis, a documentagiio formal abrangente ndo ¢ uma prioridade
conforme os valores definidos anteriormente na se¢fo 3.2.1 item b, mas a utilizacao

de uma documentagdo apropriada e de comum entendimento aos stakeholders

envolvidos € relevante para o processo.

Os Métodos Ageis se valem de cartdes com algumas palavras ou casos de uso
simplificados (as user stories em Extreme Programming, por exemplo) como

documentos de requisitos de alto nivel (Goetz, 2002). Estas descrigfes muito curtas e

75

abstratas servem principalmente como marcos ou notas promissorias para uma
conversa futura, entre as equipes.

A documentagio é complementada com o0s testes aceitagfio dos requisitos, escritos
normalmente pelo préprio cliente, e serve como base para a construgfo do software
funcional. Essa documentagfio de alto nivel acaba atuando como um contrato de

desenvolvimento entre cliente ¢ desenvolvedor, vilido apenas para o incremento

vigente de desenvolvimento.

Como uma documentagfo concreta e verificdvel, o software funcional é considerado,
por Goetz (2002), uma documentagfo eletrOnica executéivel e atualizada just in time.
Os requisitos estdo dispostos no software e concretamente verificados; a cada

iteracdo, a documenta¢o é atualizada e compartilhada por todos os membros da

equipe.

Esses aspectos viabilizam que uma boa quantidade de conhecimento seja transferida
de cliente ao desenvolvedor, em um espago de tempo muito curto, com um overhead
burocritico muito pequeno, enfatizando a velocidade e a agilidade do método. A
figura 23 do processo de captura de requisitos em Métodos Ageis pode ser

complementada com a figura 24, exibindo a existéncia da especificagdo de requisitos

por todo o processo.

76

Especificacdo de Requisitos

& € & <5 3

A

a-Face l\q{)

Desenvéi.vedores ; Releas EET
N =
g I&;:;TF | plssugr de 7 Madelagem

-t~ o ———! Romplislos | — = o e ———— = i —— Potenciaia - -
BT e || P [T7S P
i | Funci
nciona
Stakelolders < priorizor |4

s
\

Figura 24 - Processo de Requisitos Ageis com Especificacio de Requisitos

O Método Agil ndo especifica quando algum tipo de documentagfo formal €
necessdria ser enviada para fora do dominio das equipes de cliente e desenvolvedor.
Alguns métodos colocam essa necessidade como um esfor¢o que deve ser envolvido
e caracterizado no processo. “Se existe a necessidade do negécio por um documento,
o cliente deve requerer o documento da mesma forma como ele requer uma fungdo:
através de um cartdo. A equipe de desenvolvimento ird estimar o custo do

documento e o cliente pode programd-la na iteragdo desejada” (Jeffries, 2001).

A geréncia de requisitos, um dos aspectos fundamentais da Engenharia de
Requisitos, estd presente nos Métodos Ageis principalmente através dos principios
do cliente on-site e a integragiio continua de software (Paulk, 2001). Utilizando as
definicBes apontadas na tabela 1 da segdio 2.2, podem-se comparar as praticas de

gerencia de requisitos com alguns principios dos Métodos Ageis, conforme

apresentado na tabela 4.

Tabela 4 - Engenharia de Requisitos x Métodos Ageis
Geréncia de Requisitos

Engenharia de Requisitos Meétodos Ageis

77

Definir a baseline dos requisitos.

Existe uma baseline e a cada ciclo de
iteracdio o cliente define quais sdo os
requisitos a serem implementados. A
baseline pode ser alterada em fungdo do
methor entendimento do software

funcional.

Revisar as mudangas de requisitos
propostos ¢ avaliar o impacto de cada

mudanga proposta antes de aprova-los

Um dos principios dos Métodos Ageis &
que toda a mudanga é bem vinda, pelo
aspecto iterativo e evolucionério. Os
clientes refinam os requisitos a partir de
um sistema funcional e os
desenvolvedores estimam seu custo. Os

clientes direcionam a aprovagao.

Incorporar as mudangas de requisitos

de forma controlada.

Os requisitos sfo incorporados na
préxima iteragdo e verificados através

do produto funcional entregue.

Manter os planos de projeto atualizados

com os requisitos.

O planejamento nos Métodos Ageis é
apenas para a préxima iteragio, pelo
seu foco na adaptabilidade do processo

e ndo da previsibilidade.

Negociar novos compromissos
baseados na estimativa de impacto

pelas mudangas dos requisitos.

O aspecto colaborativo das equipes ¢ a
presenca do cliente na equipe de projeto
promovem uim comprometimento com

o sucesso do projeto.

Manter rastreabilidade dos requisitos
com suas correspondentes andlises,

modelos, cédigos fonte e casos de teste.

O valor de entrega de software
funcional, ao invés de uma
documentagiio abrangente, minimiza a
necessidade de niveis de rastreabilidade
pela caracteristica evoluciondria e

emergente dos requisitos.

Apontar o estado dos requisitos e das

atividades das mudangas no andamento

O software funcional entregue € a

medida bésica do progresso do projeto;

78

do projeto. 0s requisitos estdo concretamente

realizados ao final da iteragéo.

Os Métodos Ageis podem controlar os requisitos emergentes de forma mais natural,
dentro de seus processos, do que a maioria dos métodos tradicionais. Liberagdes
freqiientes e rapidas de software funcional descobrem requisitos ndo claros, e riscos

com novas tecnologias sdo reduzidos, habilitando a exploragdo de solugdes

alternativas com tecnologia.

Direcionando o processo para pessoas, estas passam a ser participantes cruciais e néo

apenas mais um dente da engrenagem do processo, com O aumento da

responsabilidade e controle adquirido (Highsmith, 2001).

O processo de captura de requisitos € completado pela geréncia de requisitos na

figura 25, ressaltando sua importéncia em todo o processo como fator essencial para

acomodagcio das mudangas freqiientes de requisitos.

Especificacio de Requisitos

S & & €y < <

@
Q
]
Ig G Al o Estimar
Desenvolvedores W Releases
& <
[s Dibscutir de 7 Modelagem
Y SR S - ——=| Roguislios | =~ ————~ e e o weamm——{ Polenciais |-
.g. Sugostbas Puterciats S Documentagdes
Fuhciona
Stakegolders g o cootzar B
3
Q
A r'y y

/
\

Geréncia de Requisitos

Figura 25 - Processo de Requisitos Ageis com Geréncia de Requisitos

79

4.3 Engenharia de Requisitos em Extreme Programming

Conforme definido na secfio 3.3.1, o Extreme Programming faz o uso constante do
principio cliente on-site. O cliente deve fazer parte da equipe de projeto e a ele ¢

atribuida a capacidade de resolver as diividas e tomar decisdes relativas a prioridades

de recursos e riscos.

Essas atribui¢des equivalem a dividir a responsabilidade do cliente em duas

categorias (Duncan, 2001):

Definicio dos pardmetros do produto do ponto de vista funcional que sao

definidos através das user stories e testes de aceitagéo.

Definigiio dos parimetros do produto do ponto de vista executdvel que sio

definidos através do cronograma de entrega do incremento do produto e

planejamento da iteragéo.

Os parimetros do produto funcional sdo principalmente comunicados através de user
stories. S@o similares aos casos de uso da UML, mas muito mais simples em seu
escopo ¢ devem ser escritas pelo cliente em cartSes € nio devem possuir mais que
algumas sentencas. Para cada user story, o cliente deve escrever um teste de

aceitagfio, normalmente no verso do cartdo da user story (Astels, 2002).

Segundo Beck (1999), as user stories possuem dois componentes. O primeiro € um
cartdo escrito com poucas sentengas sobre a funcionalidade desejada e apontando,
quando necessdrio, para um documento de apoio. O segundo, ¢ ndo menos
importante, é a séric de conversas que deverd ocorrer entre o cliente e o

desenvolvedor sobre a user story, que captura as documentagdes que a equipe ache

relevante em referenciar no cartio.

80

Uma caracterfstica que diferencia do método tradicional é que os requisitos, em XP,
nfio necessitam ser escritos para responder todas possiveis questdes, uma vez que o

cliente esteja sempre ali para responder as perguntas que surjam.

Esta técnica pode ficar rapidamente fora de controle para um desenvolvimento de
grande porte, mas para pequenas e médias equipes podem oferecer uma substancial

economia, agilidade e desburocratizagiio (Duncan, 2001).

Os programadores analisam cada user story ¢ estimam o esforgo necessdrio para
implements-lo. O XP utiliza, como métrica, os story points ou semanas ideais de 40
horas para desenvolvimento (Astels, 2002). Se o programador estimar que a user
story, de modo isolado, poderd levar que mais de trés semanas ou tr€s story points

para implementé-lo, pede ao cliente que divida a user story em outras menores.

Uma vez que as use stories foram estimadas, o cliente seleciona quais irdo ser

implementadas para os releases a serem entregues focando, deste modo, os interesses

principais do negécio.

Cada user story a ser implementada é dividida em tarefas. Um par de programadores
ird trabalhar para solucionar uma tarefa por vez (Astels, 2002). O primeiro passo é
solucionar a tarefa , apds seu entendimento, escrevendo casos de testes unitarios.
Para Beck (1999) os casos de testes irfio definir a quantidade de esforco de
codificacio para a tarefa. Uma vez que os testes obtiverem aceitagdo, a tarefa €

considerada completa. Para qualquer nova integracio de cédigo, todos os testes

deverfio possuir nova aceitagio.

Segundo Duncan (2001), os testes unitdrios para as tarefas, podem ser considerados
como uma forma de requisitos, ndo simplesmente como uma forma de especificagio
executdvel, mas o reconhecimento e registro, por parte da equipe de
desenvolvimento, de requisitos especificos para cada tarefa através de seus casos de

testes, caracterizando-os como requisitos persistentes, em funcdo do principio de

desenvolvimento baseados em testes do XP.

81

Os testes de aceitagdo, que correspondem aos testes tipo caixa-preta, de

responsabilidade do cliente, devem assegurar que os cendrios especificados sejam

suficientemente completos para aquela iterag@o.

Esses testes de aceitacio servem como um determinador de ndo ambigiiidade e

corregiio, quando os requisitos especificados pelo cliente encontram respaldo no

cédigo entregue (Duncan, 2001).

A especificaciio de requisitos, em Extreme Programming, ndo € identificada como
um tnico documento, sendo uma colegdo de user stories, testes de aceitagio escritos
pelo cliente e testes unitdrios de cada tarefa. O cliente, como parte da equipe de
projeto, pode ser considerado como parte da especificagdo, desde que esteja

disponivel para responder as questdes e esclarecer as ambigtiidades (Duncan, 2001).

O XP , como um Método Agil, possui a caracteristica de um processo evoluciondrio
com incrementos, os menores e mais rdpidos possiveis, com entrega de software
funcional. Esta caracteristica permite que os clientes visualizem de forma concreta o

progresso do projeto e realimentem de forma ripida com requisitos ¢ mudangas

necessérias para atingir suas expectativas.

Segundo Wiegers (1999), bons requisitos devem ser, conforme definido na segéo 2.4:
Completos, Corretos, Decomponiveis, Necessérios, Priorizdveis, Sem ambigiiidade e

Verificdveis. Ainda, uma especificagio deve ser: Completa, Consistente,

Modificavel, Rastreavel.

Comparando as caracteristicas definidas anteriormente com a andlise de Duncan
(2001), constata-se que apenas a rastreabilidade nio é referenciada. A necessidade

desta caracteristica deve ser avaliada pelas equipes do cliente e do desenvolvimento e

adaptada ao processo, se for o caso.

Prosseguindo com a andlise, no método Extreme Programming, os requisitos devem

ser, segundo Duncan (2001):

82

Correto, sem ambigiiidade e necessdrios: Com a presenga do cliente on-site,
ambigitidade e problemas de entendimento de requisitos sdo minimizados e
de facil solugdo. Os requisitos s&o considerados corretos se e somente se eles
representam o sistema a ser construido. Uma vez que os préprios clientes
escrevem as user stories sob o ponto de vista do interesse dos negdcios, 0s
requisitos resultantes devem ser corretos e necessdrios. Devido a tanta
responsabilidade e liberdade, a selecio de um cliente representativo
apropriado é crucial para o sucesso do projeto. Mesmo que o cliente néo saiba
exatamente o que deseja no inicio do projeto, a natureza evoluciondria do

desenvolvimento XP direciona o sistema para um melhor alinhamento com as

necessidades do cliente.

Modificdvel: O ciclo de vida do XP incentiva as mudangas na especificagio
dos requisitos em qualquer ponto do desenvolvimento do sistema. A
especificagdo é traduzida em uma colegiio de user stories, onde o cliente tem
total poder sobre ela. Os requisitos resultantes, apds a entrega de software
funcional ou as mudancas no dominio de negécios, séo traduzidos, através de
novas user stories, e as alteragbes de prioridades sfio realizadas, conforme a
necessidade. Em fungdio do planejamento, testes e integragio serem todos

executados de forma incremental, o XP possui um alto grau no atributo de

modificabilidade.

Verificdvel: os testes de aceitaciio, escritos pelo cliente, e os testes unitérios,
escritos pelos programadores para solucionar as tarefas derivadas das user
stories geradas pelo cliente, criam um conjunto de especificac@o/testes de
requisitos que sdo verificdveis pelo principio da presenga on-site do cliente e
seu comprometimento com o projeto. Pelo fato do cliente escrever os testes
de aceitagdo baseados nas user stories, pode-se considerar uma especificagio

funcional armazenada em um formato ndo ambiguo e verificavel.

83

Priorizdvel: Ao escrever as user stories, o cliente atribui um nivel de
prioridade para cada uma. No plano de release e iterago, o cliente define
quais user stories deseja que sejam implementadas em cada entrega. Assim,
cada requisito é apontado pela sua importéncia relativa ao seu tempo. Além
das prioridades, o custo estimado de cada user story, efetuado pela equipe de

programadores, é agregado no fator de decisdo das fungdes a serem entregues

no ciclo a se iniciar.

Vidvel, decomponivel: O principio de entrega de software funcional com
valor para o negécio, de modo constante ¢ em pequenas partes, garantc a
viabilidade dos requisitos, minimizando o risco de o cliente adquirir um
produto invidvel. Em XP, as partes com alto-risco, identificadas pelo cliente e
pela equipe de desenvolvimento, sdo implementadas primeiro, de medo a
componentes invidveis serem identificados nos ciclos iniciais de forma
répida, para que o projeto possa ser abortado sem um custo expressivo. O XP
faz uso da atividade de prototipacio para especular sobre os componentes
identificados como sendo de risco. Essa prototipagfio, chamada de spike, €

executada no nivel de uma exploragio de cédigo sobre a user story

identificada.

Consistente: A consisténcia dos requisitos € verificada a cada final do ciclo
iterativo, através da realimentagio obtida com a avaliagdo do software
funcional de valor entregue para o cliente,com percepgdo no produto tangivel

sobre suas reais necessidades.

Completa, concisa: O XP foca a programagio como a atividade mais
importante do método; assim, pouco esforgo € gasto na criagio de
documentos formais, podendo considerar a especificagio como bastante
concisa. O custo dessa especificagiio concisa pode ser a falta de completude,
que ¢ tratado através do cliente on-site. Sua disponibilidade para a equipe de

desenvolvimento pode ser considerada como a complementagfio da

especificacio.

84

O Extreme Programming, apesar de nfo referenciar explicitamente, possui atividades
da Engenharia de Requisitos através de seu ciclo de vida, em estdgios pequenos e
informais, calcados em um processo disciplinado. O cliente une-se & equipe de
desenvolvimento para escrever user stories, desenvolver testes de aceitagdo, fixar
prioridades e responder as questdes sobre os requisitos. As user stories sdo um
simples escopo se comparados aos casos de uso e a sua finalidade € promover a
conversagio entre cliente e desenvolvedor para o refinamento dos requisitos. As user
stories informais sdo transformadas em testes unitdrios e de aceitago que, unidos ao
cliente e ao produto funcional entregue, caracterizam uma especificagdo.Nota-se um
ganho nos atributos de nfio ambigiiidade, requisitos corretos e verificdveis, pela

forma como o cliente é incluido no processo, estando sempre presente para responder

as perguntas ¢ esclarecer dividas.

Goetz (2002) considera que os principios utilizados em Extreme Programming
proporcionam uma Engenharia de Requisitos eficiente para projetos com pequenas
equipes, onde o tempo & um limitante extremo, através da minimiza¢do de

especificagSes abrangentes baseado na comunicagdo verbal e software funcional

disponibilizado rapidamente e de forma evoluciondria.

Eberlein (2002) comenta que o XP & uma oportunidade para a Engenharia de
Requisitos em termos de evolugdio, mas alerta sobre alguns pontos relevantes como:
identificagiio da existéncia do real representante do negdcio para compor a equipe do
cliente, referéncia pouco clara sobre requisitos nfio funcionais, necessidade de uma
melhor definicio do processo de transformar user stories em tarefas para os

programadores e a responsabilidade do cliente em escrever testes funcionais em

termos de qualidade e efetividade.

4.4 Comparativo entre Rational Unified Process e Extreme Programming sob o
ponto de vista de requisitos

Neste item serd descrito o processo de desenvolvimento RUP (Rational Unified

Process) de forma resumida e o fluxo de trabalho do processo referente a requisitos

85

de forma detalhada. E feito, entio, um comparativo do RUP com o método de
desenvolvimento 4gil XP (Extreme Programming), do ponto de vista da Engenharia
de Requisitos, por serem eles considerados os extremos em relagdo ao formalismo
das suas atividades. Sendo o RUP um framework, onde seu processo pode ser
particularizado para um determinado ambiente, torna-se interessante explorar quais
equivaléncias possui com Extreme Programming, em termos de Engenharia de

Requisitos, para projetos com pequenas equipes, requisitos instéveis e ciclos rapidos

de desenvolvimento.

4.4.1 Rational Unified Process

RUP é um processo desenvolvido e mantido pela Rational Software Corporation.
Trata-se de uma metodologia de desenvolvimento baseada em seis priticas utilizadas
pela industria de software: desenvolvimento iterativo, geréncia de requisitos,
arquitetura baseada em componentes, modelagem visual, verificagio continua da

qualidade e mudangas controladas (Pollice, 2001).

Um projeto baseado no RUP percorre quatro fases: Concepg#o, Elaboragio,
Construgio e Transigdo. Cada fase ¢ composta por uma ou mais iteracdes, sendo que
em cada iteragdo se utiliza o esfor¢o de forma paralela de virias disciplinas, como:

Requisitos, Andlise e Projeto, Implementagdo, Testes e outras disciplinas de

infraestrutura (Pollice, 2001).
As fases sdo descritas resumidamente a seguir:

Concepgdio. A principal meta, na fase de concepgio, € obter a colaboragéo de
todos os stakeholders para os definir os objetivos do projeto. A fase de
concepgio é bdsica para os esforgos de desenvolvimento, pois existe um risco

significativo com relag#o a requisitos e negécio que devem ser explorados

antes que o projeto seja executado.

Os objetivos basicos da fase de concepgiio incluem (Booch, 1999):

86

o Estabelecer o escopo do projeto e condices limites, incluindo a
criago da visdo do projeto, critérios de aceitagfo, e a definigdo do

que deve ser feito e o que ndo dever ser feito no produto.

o Capturar os casos de uso criticos do sistema, 0s cendrios basicos de

operagio que irdo direcionar uma grande parte da modelagem.

o Propor uma arquitetura candidata baseada em cendrios primirios de

funcionalidade.

o Propor a estimativa inicial do custo total e dos prazos para todo o

projeto.
o Estimar riscos potenciais.
o Preparar o ambiente de suporte para o projeto.

- Elaboragdo. A meta da fase de elaboragfio é definir uma baseline da
arquitetura do sistema, proporcionando uma base estdvel para a maior parte
do esforgo de projeto e implementagdo referente & fase de construgao. A
arquitetura envolve a consideragfio dos requisitos mais significativos e a

avaliagdio de seu risco. A estabilidade da arquitetura pode ser avaliada através

de uma ou mais protétipos de arquitetura.
Os objetivos basicos da fase de elaboragio sdo (Booch, 1999):
o Certificar que a arquitetura, os requisitos e o planejamento sdo
suficientemente estaveis, € os riscos atenuados, de modo a prever €

determinar o custo e prazo para o desenvolvimento completo.

o Capturar todos os riscos significativos de arquitetura do projeto.

87

o Estabelecer a baseline de arquitetura.

o Produzir um protétipo evoluciondrio de componentes com qualidade

de produgio, como também protétipos de carater exploratérios para

atenuar os riscos.

o Certificar que a arquitetura baseline fornecera suporte para os

requisitos do sistema a um custo e tempo razodveis.

o Estabelecer o ambiente de suporte.

Construgdo. A meta da fase de construggo € identificar os requisitos restantes
e complementar o sistema baseado na arquitetura definida. A fase de
construgiio possui a mesma caracteristica que um processo de manufatura,
onde € enfatizada a geréncia de recursos e o controle de operagGes para
custos, prazos e qualidade. Neste sentido, a geréncia proporciona uma
transi¢io de um desenvolvimento de uma propriedade intelectual durante a
fase de concepgdo e elaboragfio, para o desenvolvimento de produtos

funcionais durante a fase de construgéo € transic#o.
Os objetivos principais da fase de construgio sdo (Booch, 1999):

o Minimizar o custo de desenvolvimento pela otimizacao de recursos e

minimizando corregcdes desnecessérias e retrabalho.

o Alcangar qualidade adequada.

o Alcangar versdes funcionais do produto.

o Completar anilise, projeto, desenvolvimento e testes de todos os

requisitos funcionais.

38

o Gerar um produto desenvolvido de forma iterativa e incremental, apto
para a transi¢do ao ambiente de produgdo. Isto implica na descri¢o

dos casos de uso restantes, adendos de modelagem, complementagao

da implementac@o e testes do software.

o Avaliar se o software, 0 ambiente € os usudrios estdo prontos para a

aplicacfio ser instalada.

o Realizar o trabalho com um certo grau de paralelismo das atividades

de desenvolvimento das equipes.

Transicdo. O foco da fase de transi¢do é transferir o software para os usurios
finais. A fase de transi¢io pode se estender por vérias iteragdes e incluir o

teste do produto para sua liberago, e pequenos ajustes baseados na
realimentagfio dos usudrios. Neste ponto do ciclo de vida, esta realimenta¢éo

deve focar, principalmente, o ajuste fino do produto, da configuragéo, da

instalacfo e das questdes de usabilidade.
Os objetivos principais da fase de transicéo sdo (Booch, 1999):

o Realizar um beta teste para validar o sistema desenvolvido com

relagdo as expectativas dos usudrios.
o Realizar o treinamento dos usudrios e dos operadores.

o Realizar atividades de refinamento tais como, corre¢fio de etros,

ganhos de desempenho e usabilidade.

o Avaliar as baselines de desenvolvimento, em funcéo da visdo

completa do projeto e critério de aceitagio do produto.

Preparar o usudrio auto-suficiente em termos da utilizagfo do produto.

89

o Obter a concordancia dos stakeholders de que as baselines de

implantagfio do produto estdo completas.

o Obter a concordincia dos stakeholders de que as baselines s&o

consistentes com o critério de avaliago da visdo do negdcio.

A caracteristica chave do RUP é a diminui¢fo do risco. Através de trés idéias
principais: casos de uso, arquitetura e desenvolvimento iterativo e incremental, o
RUP atua de forma a cobrir as necessidades de desenvolvedores para construir
ferramentas para suporte de automagéo de processos, fluxos de trabalhos individuais,
diferentes modelos, e integrar as atividades e seus modelos através do ciclo de vida
do projeto (Booch, 1999).

A figura 26 exemplifica o processo sob uma perspectiva da iteratividade.

Requisitos
Andlise &
Projeto

Modelagem
Negécio

Planejamento 0 Implementagic
Gerenciamento
de Mudangas o

Pianejameanto Configuragio

Iniciat

Implantagio

Avaliagio
Figura 26 - Rational Unified Process - (Pollice, 2001)

4.4.2 Requisitos no Rational Unified Process

Booch (1999) define que o propésito essencial do fluxo de trabalho de requisitos no
Rational Unified Process € direcionar o esfor¢o de desenvolvimento para o sistema
correto. Isto & alcangado pela descrigdo dos requisitos do sistema (condigdes e

capacidades que o sistema deve possuir) e um contrato entre o cliente ¢ 0s

90

desenvolvedores do sistema sobre o que deve e ndo deve ser feito sobre o sistema em
questdo. Definir um sistema significa traduzir e organizar o entendimento das
necessidades dos stakeholders em uma descri¢io significativa do sistema a ser

construido (Ericsson, 2002).

O maior desafio desta filosofia € que o cliente, considerado o especialista principal
do negécio, deve ser capaz de ler, entender e absorver os resultados da captura dos

requisitos. Para atingir este objetivo deve-se utilizar a linguagem do cliente para

descrever estes resultados (Rational, 2001).

Uma vez capturados, os requisitos devem auxiliar o gerente de projeto a planejar as

iteracdes e releases do produto para o cliente.

As atividades do fluxo de trabalho de requisitos do Rational Unified Process € os
artefatos resultantes assumem diferentes formas durante as diferentes fases

(Concepgio, Elaboragio, Construcio e Transi¢fo) e suas iteracdes:

Na fase de concepgio, os analistas identificam a maioria dos casos de uso,

delimitando o sistema € o escopo do projeto, e detalhando os mais criticos.

- Durante a fase de elaboragio, os analistas capturam a maioria dos requisitos
remanescentes, de modo a dimensionar o esforgo que sera requerido para o
projeto. A meta é capturar cerca de 80% dos requisitos ¢ ter descoberto a

maioria dos casos de uso ao final da fase de elaboragfo.
Os requisitos restantes serdo capturados durante a fase de construgéo.

Na fase de transi¢fio nio existe nenhuma captura significativa de requisitos, a

menos que exista mudanga de requisitos.

A descri¢io do fluxo trabalho de requisitos do Rational, Unified Process, segundo a

Rational (2001), estd apresentada na figura 27.

91

Wl g
[Smzema Bxistonin) F‘-
|Nrva Enirada)
£
Anigers e L]
Frobiema i il
T [Pratlerns
tncoeratal e
S
NS0 pode
st fleist adda

ierenciar o Escopn
i Bakaa

Ratiresra Definindy
#o Sialema J

\4

Figura 27 - Fluxo de Trabalho de Requisitos — (Rational, 2001)

As atividades do fluxo, mostradas na figura 27 podem ser detalhadas em relacdo aos

seus objetivos (Rational, 2001}:

- Andlise do Problema: Seus cbjetivos principais sdo: obter um acordo sobre o
problema ser resolvido, identificar os stakeholders, definir as interfaces do

sistema e identificar condi¢Ges e limites impostos pelo sistema.

- Entendimento das necessidades dos stakeholders: Seu propdésito € coletar e

elicitar as reais necessidades dos stakeholders do projeto, de modo inteligivel.

- Definicdo do sistema: Seus objetivos sdo: alinhar a equipe de projeto no
entendimento do sistema, executar uma andlise de alto-nivel sobre 03

resultados das necessidades coletadas dos stakeholders.

92

Geréncia do escopo do sistema: Seus objetivos sfio: priorizar e refinar a
selecdo de funcdes e requisitos que deverdo ser incluidos na iteragdo corrente,
definir a colegdo de casos de uso que representam, de forma significativa, as

fungdes principais do sistema, e definir quais atributos de requisitos e de

rastreabilidade serdo mantidos no projeto.

Refinamento da defini¢do do sistema: Os propdsitos desta atividade sdo:
definir em detalhe o fluxo de eventos de casos de uso, detalhar as
especificagdes suplementares, desenvolver uma Especificagdo de Requisitos

de Software detalhada, se necesséirio, e modelar e prototipar a interface do

usudrio.

Geréncia da mudanga de requisitos: Seus objetivos sfo: avaliar formalmente
os pedidos de mudangas de requisitos, determinar seus impactos na colegio
existente de requisitos, estruturar o modelo de casos de uso, configurar os
atributos apropriados dos requisitos e da rastreabilidade e verificar

formalmente os resultados dos requisitos se estdo em conformidade com a

visdo do usudrio sobre o sistema.

Do ponto de vista da geragdo dos artefatos, as seguintes atividades s@o executadas no

fluxo de trabalho de requisitos no RUP:

Desenvolvimento do Plano de Geréncia de Requisitos. Desenvolver um plano

de documentagfo dos requisitos, seus atributos para rastreabilidade e geréncia

dos requisitos.

Desenvolvimento da Visdo do Projeto. Obter um acordo sobre quais
problemas o sistema precisa resolver, identificar os stakeholders para o

sistema, definir os limites do sistema, descrever as fun¢Ges basicas do

sistema,

93

Elicitacdo das necessidades dos stakeholders. Entender quem sio os
stakeholders para o projeto, capturar os requisitos de forma completa,

priorizar as requisi¢Oes dos stakeholders.

Captura do vocabuldrio comum. Definir um vocabuldrio comum que pode ser
usado em todas as descri¢Bes textuais do sistema, especialmente nas

descri¢Ges dos casos de uso.

Identificacdo dos Atores e dos Casos de Uso. Delinear as funcionalidades do
sistemna, definir quem e o que ird interagir com o sistemna, dividir o modelo
em pacotes com atores e casos de uso, criar diagramas do modelo de casos de

uso, realizar uma inspegéo do modelo de casos de uso.

Geréncia das dependéncias. Utilizar os atributos e a rastreabilidade dos

requisitos de projeto para auxiliar na geréncia do escopo do projeto e geréncia

da mudanca dos requisitos.

Estruturacdo do Modelo de Casos de Uso. Extrair o comportamento dos
casos de uso que necessitam ser considerados como casos de uso abstratos
(comportamento comum, opcional, excepcional), encontrar novos atores

abstratos que definem regras que so compartilhados por vérios atores.

Priorizacdo dos casos de uso. Definir parimetros para a selegfo do conjunto
de cendrio e casos de uso que serdo analisados na iteragiio corrente, definir a
colegdio de cendrios e casos de uso que possuam alguma representagio
significativa com funcionalidade principal, definir o conjunto de casos de uso
e cendrios que possuem uma cobertura substancial sobre a arquitetura ou que

realcem ou jlustrem um ponto especifico ou delicado na arquitetura.

Detalhamento dos casos de uso. Descrever o fluxo de eventos dos casos de

uso em detalhes, de modo que o cliente e os usuérios possam entendé-los.

94

- Detalhamento dos Requisitos de Software. Coletar, detalhar e organizar um

conjunto de artefatos que descrevem completamente os requisitos de software

do sistema ou do subsistema.

Modelagem da Interface do Usudrio. Construir um modelo de interface de

usuério que fornega suporte para a melhoria da usabilidade.

- Prototipagdo da Interface do Usudrio. Criar um prot6tipo de interface do

usudrio.

Revisdo dos Requisitos. Verificar formalmente se os resultados do fluxo de

trabalho de requisitos estio em conformidade com a viséo do cliente sobre 0

sistema.
Os seguintes artefatos podem ser gerados pelo fluxo de trabalho de requisitos:
- Glossdrio. Define os termos mais importantes para o projeto.

- Regquisitos de Stakeholder. Contém qualquer tipo de requisitos que um

stakeholder pode ter sobre o sistema a ser desenvolvido.

Plano de Geréncia de Requisitos. Descreve a documentaggio dos requisitos,

tipos de requisitos e seus respectivos atributos.

Casos de Uso. Define uma seqiiéncia de agGes que um sistema executa € 0s

resultados de valor para um determinado ator.

- Especificagdo de Requisitos de Software. Contém os requisitos de software

para o sistema.

95

- Visdo. Define o ponto de vista do stakeholder sobre o produto a ser

desenvolvido especificando, nos termos dos stakeholders, necessidades

chaves ¢ funcdes.

- Modelo de Casos de Uso. Modela as fungdes pretendidas para o sistema e seu

ambiente, ¢ serve como um contrato entre o cliente € o desenvolvedor.

Especificagdo Suplementar. Captura os requisitos de sistema que néo podem

ser capturados nos casos de uso e seu modelo.

Atributos dos Requisitos. Contém um reposit6rio de requisitos do projeto,

atributos e dependéncias para a geréncia dos requisitos.

- Storyboard. E a descrigdo 16gica e conceitual de como o caso de uso se

comportara através da interface do usudrio, incluindo a interagéo entre ator e

sistema.
- Protétipo da Interface do Usudrio. E o protétipo funcional da interface do

usuario.

4.4.3 Requisitos em RUP versus Requisitos em XP

Nesta se¢fio sdo discutidas, de forma comparativa, as atividades do fluxo de trabalho
de requisitos do RUP, expostas em 4.4.2, em relago ao método Extreme

Programming. As atividades séo aquelas apresentadas na figura 27 e sdo as

seguintes:
- Andlise do problema

- Entendimento das Necessidades dos Stakeholders

- Definicdo do Sistema

96

- Geréncia do Escopo do Sistema
- Refinamento da Defini¢io do Sistema

- Geréncia das Mudancas de Requisitos.

4.4.3.1 Analise do Problema

RUP
A atividade primdria € desenvolver a Visio do Projeto. A visfo expressa 08

requisitos iniciais com as caracteristicas chaves que o sistema deve possuir para
resolver os problemas criticos e encontrar as reais necessidades dos stakeholders
(Ericsson, 2002), que sfo traduzidas em uma colecfio de fungdes de alto nivel de
abstracfio que o sistema deve possuir. Estas funges devem ser classificadas, através

de um peso relativo ¢ da origem da necessidade, possibilitando que as dependéncias

possam ser gerenciadas.

XP
A Viséo do Projeto, em XP, corresponde 2 conceituagio do sistema. Ela uniformiza

as expectativas das equipes do cliente e de desenvolvimento, através de uma
compreensio do sistema que deve ser criado. Essa compreenséo € obtida por meio de
reunides entre os clientes e os desenvolvedores e registrada através de uma
declaragiio sobre a finalidade da criagdo ou ampliagio do sistema. Os clientes sdo
autores e responsaveis por essa declaragfo, cabendo aos desenvolvedores avaliar 08
riscos, os impactos iniciais e a tecnologia para atender a solicitagfo. Caso os clientes
ndo consigam conceituar o sistema, utiliza-se a Metéfora que representa um conceito
comum 3s duas equipes (cliente e desenvolvedores), capaz descrever ¢ conceituar o

sistema, servindo como ponto de partida para a compreensdo inicial do sisterna.

RUP

97

A andlise do problema também identifica os atores principais, identificando algumas
maneiras que eles irfio interagir com o sistema, onde as descri¢des devem estar mais
para o processo do negécio do que para o comportamento do sistema. Os
stakeholders sio consultados sob varios pontos de vista para ajudar a refinar a
descrigfio do problema e participam da negociagdo da priorizagfo das principais
funcdes, objetivando um entendimento geral dos recursos ¢ esforgos necessarios para

0 desenvolvimento.

XP
Nio existe e identificacdo formal dos atores. Os casos de uso que so origem dessas

informagdes no RUP correspondem as user stories em XP. A diferenga entre eles ¢
que o caso de uso € uma colegio completa de ages iniciadas por um ator, alguém ou
algo externo ao sistema, proporcionando um valor visivel e um user story € apenas
um escopo da funcionalidade, escrita em poucas palavras, necessdria para solucionar
um problema e utilizado com um ponto de partida para conversas futuras entre
cliente e desenvolvedor. Um caso de uso pode conter vérios user stories (Pollice,
2001). No XP, o fato do cliente fazer parte da equipe de desenvolvimento e ser

responsdvel pelas user stories dispensa o levantamento formal dos atores do sistema.

RUP
Devido ao envolvimento de varias pessoas de diferentes capacitagdes e habilidades,

torna-se importante a defini¢fio de uma terminologia que serd utilizada pelo projeto.

Inicialmente os termos serfio definidos no glossdrio que deverd ser mantido através

do ciclo de vida do projeto.

XP
Niio possui um glossirio de termos, que & substituido pelas user stories e pela

verbalizagio entre os membros das equipes do cliente e de desenvolvimento (Smith,
2001). A comunicag#io face-a-face ¢ outra pratica fundamental em XP, que pode
justificar a inexisténcia de um glossario como um artefato especifico pois, pela
presenca constante do cliente na equipe de projeto e pela sua colaboragdo continua, a

transferéncia de conhecimento acontece através desse canal. O cddigo acaba

98

refletindo o glossdrio do projeto, pois enquanto se desenvolve o sistema, aprende-se

e refina-se continuamente o vocabuldrio que é usado para definir suas classes (Astels,

2001).

RUP
O desenvolvimento de um plano de geréncia de requisitos é iniciado e deverd

fornecer informacdes sobre os artefatos de requisitos que deverdo ser desenvolvidos,
os tipos de requisitos que deverdo ser gerenciados para o projeto, os atributos dos
requisitos que deverfio ser coletados e a rastreabilidade de requisitos que serd
utilizada.

Embora a prioridade, o esforgo, os recursos, as estimativas de mudangas e o controle
de dependéncias sejam enfatizadas nas fases iniciais, importante ressaltar que

devem continuar por todo o ciclo de desenvolvimento do projeto (Ericsson, 2002).

XP
Os requisitos nJo s3o coletados formalmente, eles emergem das iteragdes e da

colaboragiio entre as equipes. Nio existe um plano de geréncia de requisitos em XP,
mas o existe o plano de uma iteragdo. O planejamento de uma iteragio envolve a
priorizagdo das user stories definidas pelo cliente e a verificagio das dependéncias
entre as user stories sob o ponto de vista de requisitos. Cada user story é estimada
pela equipe de desenvolvedores, em termos de esforco, e um custo € estimado e fixo
para a iteragio.Um dos principios bésicos dos Mmétodos Adgeis e,
conseqiientemente, do XP é que todas as mudangas s#o bem vindas. A mudanga é
incentivada no processo do XP, pois com a ela existe o aprendizado e o refinamento
dos requisitos. O produto de valor entregue para o cliente responde como artefato de
requisito, sob o ponto de vista da aceitagio e certificagio dos requisitos, através da
sua realimentacfo constante. Astels (2001) afirma: “A iteragdo é um reconhecimento
de que fazemos as coisas erradas antes de fazé-las certas...Criamos algo

rapidamente para podermos criar algo melhor da préxima vez”.

4.4.3.2 Entendimento das Necessidades dos Stakeholders

RUP

99

O propésito principal desta atividade é coletar ¢ elicitar informagao dos stakeholders
envolvidos no projeto, de modo a entender quais sdo os seus reais requisitos. Young
(2001) define os reais requisitos como conjunto de todos os requisitos que refletem
as expectativas e as necessidades dos clientes, agregando valor ac seu trabalho e ao
seu negécio. Esta atividade & executada, principalmente durante as fases de
concepgio e elaboragio.

Os requisitos possuem muitas fontes em projeto de software. Eles se originam de
qualquer um que tenha interesse no projeto. Cliente, parceiros, usudrios finais,
especialistas do dominio, geréncia, membros da equipe de projeto, politica da
empresa e agéncias reguladoras sfio algumas fontes de requisitos. Isto torna
importante saber como 0s requisitos devem ser capturados, COmo ter acesso a elese
como eleger e elicitar a informag#o para o projeto de software (Ericsson, 2002).

O analista de sistema, em colaboragfio com os principais stakeholders, identificam 0s
stakeholders adicionais, capturam as necessidades e determinam quais os requisitos e
as fungbes chaves por meio de entrevistas, workshops, storyboards, ¢asos de uso do
processo do negdcio e outras técnicas. Um ou mais analistas de sistemas atuam como
facilitadores para estas sessdes. Os analistas de sistemas armazenam, categoriza €

priorizam os principais requisitos dos stakeholders.

XP
A principal forma de entendimento das necessidades dos stakeholders ¢ a entrega de

software funcional. “ Apds um sistema assumir a sua forma concreta, nés podemos
falar sobre o que ele tem de certo ou ndo. Isso acontece porque existe uma estrutura
de referéncia” (Astels, 2002). As user stories e a comunicagdo face-a-face procuram
criar um canal de comunicagfio entre o modelo mental do cliente e o modelo mental
do desenvolvedor, e o software funcional transforma este entendimento em algo
tangivel. As realimentacdes dos clientes, sobre a entrega, representam a real
necessidade sobre um modelo concreto de referéncia e levam a um melhor
entendimento dos requisitos. “...quando o sistema & entregue, a equipe do cliente
pode querer fazer alteragdes. Entretanto, essa é a natureza do software, ser fdcil e

facilitar as alteragdes...Embora as user stories possam ser escritas a qualquer

100

momento, apds a atividade inicial, elas sdo escritas com mais freqiiéncia na entrega.

Isso é um indicador de sucesso” (Astels, 2002).

RUP
Baseado em um melhor entendimento das necessidades, o analista de sistemas refina

a documento de Visdo do Projeto, procurando desenvolver uma declaragéo do
objetivo do produto. Em duas ou trés sentengas, esta declarag@io deve estabelecer 0
real valor do projeto. Esta declara¢fio deve conter os usudrios alvos, os problemas a
serem resolvidos, os beneficios a serem atingidos e o ganho de competitividade.
Todos os membros da equipe devem entender este tema de projeto. O glossério de

termos € atualizado para facilitar um entendimento comum dos termos.

XP

A conceituagdo nio é uma atividade exclusiva e deve ser refinada em qualquer
momento durante o projeto, o planejamento, o desenvolvimento ou a entrega,
objetivando uma melhor compreensfo dos requisitos para o sistema e da abordagem
técnica que serd usada para realizar os requisitos (Astels, 2002). Em XP o glossario,
apesar de n#o existir formalmente, € refinado continuamente, pois € um processo
constante de aprendizado de termos e significados que sdo compartilhados pelos

membros das equipes. Do ponto de vista da equipe de desenvolvimento ¢ uma

imersio no mundo do cliente.

4.4.3.3 Definicio do Sistema

RUP
Definir um sistema significa traduzir e organizar o entendimento das necessidades

dos stakeholders em uma descrigdo significativa do sistema a ser construido
(Ericsson, 2002),

O objetivo desta atividade € uniformizar o entendimento da equipe sobre o sistema a
ser construido, executar uma andlise de alto nivel sobre os resultados coletados das
necessidades dos stakeholders, refinar a Visio de Projeto para incluir fun¢des no

sistema, refinar o modelo de casos de uso, e formalizar os resultados em modelos ¢

documentos {Rational, 2001).

101

O glossério esta atualizado para refletir o entendimento corrente sobre os termos
usados para descrever as caracteristicas e os requisitos capturados no modelo de

casos de uso e nas especificacdes complementares.

O analista de sistema utiliza a colego de fungdes definidas no refinamento da Viséo
do Projeto, para derivar e para descrever os casos de uso que representam o
comportamento esperado do sistema, segundo a visio dos usudrios. O caso de uso
serve como um contrato entre o cliente, os usudrios e os desenvolvedores em como
as fungdes selecionadas irfio trabalhar no sistema. Isto ajuda a fixar expectativas
realistas e metas para os desenvolvedores e ajuda os clientes € os usudrios a validar
que o sistema estd indo de encontro as suas expectativas.

A definigdo do sistema ir4 focar o detalhamento na identifica¢@o dos atores e casos
de uso e expandir os requisitos n#o funcionais globais. E executado, tipicamente, nas
iteragdes iniciais das fases de concepgio e elaborag3o, embora possam ser revisados

conforme a necessidade, como forma de responder a mudangas de requisitos sob

controle da geréncia do escopo.

XP
A uniformizacfio do entendimento do sistema a ser construido € fundamentada nos

valores de colaboragfio e comunicagio face-a-face.

As user stories, escritas pelo cliente, diferentemente dos casos de uso, sdo um
compromisso para uma conversa futura entre cliente e desenvolvedor, e funcionam
como um balizador para o planejamento das iteragdes ¢ estimativas de esforgos
(Beck, 1999).

As seqiiéncias de eventos esperadas pelo cliente estarfio no préprio produto
funcional, proporcionando de forma tangivel a certificagio dos requisitos pretendidos
nas user stories. Através da realimentagio do cliente on-site, os requisitos vao
emergindo e as mudangas necessérias vio sendo absorvidas pelo processo.

Esta atividade percorre todo o ciclo de vida do software em fungfo de seu processo

caracteristico: iterativo e incremental.

4.4.3.4 Geréncia do Escopo do Sistema

RUP

102

A geréncia do escopo € uma atividade de controle da colegfo de requisitos do
sistema, de forma a se adequar aos recursos disponiveis para o projeto (tempo,
pessoas e dinheiro), devendo ser realizado de forma continua, com desenvolvimento
iterativo e incremental, com o desmembramento do escopo em porges menores €
melhor gerencidveis (Ericsson, 2002).

Utilizar atributos de requisitos como prioridade, esforgo € risco, como base para
negociagfo da incluséo de requisitos, é particularmente uma técnica usual para a
geréncia de escopo.

Seus objetivos sdo: priorizar e refinar a sele¢io de fungdes e requisitos que sdo
incluidos na iteragdio corrente, definir a cole¢io de casos de uso que representam
algum significado para uma funcionalidade central e definir quais atributos de
requisitos e rastreabilidade devem ser mantidos.

Ap6s identificar os requisitos no nivel de funcionalidade, descrever a maioria dos
atores, casos de uso, e outros requisitos descritos nas especifica¢des suplementares, o
analista de sistemas deve atribuir valores, de forma mais precisa possivel, para os
atributos dos requisitos como prioridade, esfor¢o, custo e risco. Isto permite um
melhor entendimento de como determinar o escopo inicial do sistema a ser entregue

e também pode possibilitar o arquiteto de sistemas identificar casos de uso

arquiteturais do sistema.

XP
A geréncia de escopo em XP se da através das estimativas de esforgo baseadas nas

user stories, seu respectivo custo (o XP nfio menciona nenhum método especifico de
quantificagfo da estimativa de esforgo € a estimativa de custos iniciais € feita apenas
por vivéncia e experiéncia dos programadores). “Muitos desenvolvedores novos em
XP podem achar dificil estimar alguma coisa. E eles estdo certos, mas nés
melhoramos com a experiéncia. Esse aspecto da XP talvez seja o mais assustador
para aqueles que nunca o experimentaram antes” (Beck, 1999). O desmembramento
do escopo em porgdes menores € feito através do plano de releases, baseado em
pilhas de user stories. Pilhas de user stories representa um conjunto de cartdes, onde
as user stories estdo escritas, priorizadas e agrupados por uma determinada afinidade,

por exemplo, um mddulo ou parte especifica do sistema. A criagio de um plano de

103

release permite que as equipes obtenham uma estimativa inicial do custo geral do
projeto, fornecendo dados para questdes de custo e beneficio e viabilidade do
projeto.

A meta do plano de release é ajudar o cliente a identificar as fungGes que o sistema
deve possuir, dar aos programadores a chance de explorar a tecnologia e fazer
estimativas, e fornecer uma idéia de tempo para todo projeto (Wake, 2001).

O controle do risco é favorecido pelo plano de releases que devem ser 0 mais curtos
possiveis e por spikes de planejamento. Spike de planejamento é uma exploragfo, em
cédigo, de uma determinada user story. O objetivo de um spike ndo € produzir

codigo e sim uma estimativa (Beck, 1999).

A defini¢ao de um esbogo ou um esqueleto da arquitetura do sistema nao € uma
prioridade no XP. A arquitetura emerge conforme as iteragdes ocorrem no processo
de desenvolvimento. Pelo fato da adog#o continua de mudangas que podem ter um
impacto global no projeto, inclusive na arquitetura, sua defini¢do nas fases inicias ou

um direcionamento pela mesma pode criar resisténcia no principio da aceitagio da

mudanga em XP.
“XP diz - adote a mudanga, enquanto métodos direcionados pela arquitetura dizem -

Algumas coisas sdo dificeis de mudar, entdo planeje o esqueleto primeiro” (Wake,

2001).

A figura 28 exibe as atividades de requisitos em XP.

104

Esrewar

[FELIE]
{Cliznte:
Ewcrevar

BT Sloge l

Tividir a Usar G Bpyke & sk
St
Ghante)
1
ERAMAERICERgon ||| o

Fase 1 Plansjsenento

Swlsdicnnr o Escops
1Cimniat

Figura 28 - Atividades Requisites XP: Exploraciio e Planejamento (Wake, 2001}

RUP
O plano de iteragdo, também conhecido como plano de desenvolvimento, é

desenvolvido em conjunto pelo gerente de projeto e pela equipe de desenvolvimento.
O plano de iteracio define o niimero e a freqiiéncia de iteragbes planejadas para

entrega. Os elementos de alto risco dentro do escopo devem ser planejados para as

iteragdes iniciais.

XP
O plano de iteragdo € criado a partir do plano de release. O release é dividido em

diversas iteragfes com tempo determinado, onde as user stories sio programadas
como parte dessas iteracdes para estender o release produzido pela iteracéo anterior,
levando em conta as dependéncias das user stories e as proridades definidas pela
equipe do cliente. A duragio das iteragdes deve ser tdo curta quanto possivel,
levando em conta fatores como a cultura da organizagéo, o ambiente de
desenvolvimento e as equipes de trabalho, proporcionando uma redugéo de riscos
com relag@o aos requisitos. O XP ressalta a importincia da primeira iteragio, pois ela
define o foco principal do sistema e o seu sucesso cria o engajamento das equipes no
sucesso do projeto, iniciando o movimento iterativo e colaborador do método. “0O

periodo de tempo que leva a entrega desse primeiro release é considerado como o

105

mais perigoso. A entrega desse sistema central é um marco importante. Ele prova

para a equipe do cliente que XP funciona. Ele prova para a equipe de

desenvolvimento que eles podem fazer com que o projeto acontega...” (Beck, 1999).

A figura 29 exibe a continuago do processo de requisitos em XP.

Lar Susrides Extrmiir
Lizsr Siores Tatolss

Fuws F: Towofos
Tarckas nivo By Seocorars
walizadas | pwilg grands Tatefa

f"ma’mﬁm
Wz‘

ngﬁmﬂm

Programador
4

me:imﬁm

Progeamadar
&

Figura 29 - Atividades de Requisitos: Brainstorming user story e definicio tarefas XP (Wake,
2001)

RUP
O analista de sistemas deve determinar os valores de prioridade, esforgo, custo, risco,

etc., em colaboragfio com os stakeholders apropriados, para alimentar o repositério
dos atributos de requisitos. Isto sera utilizado pelo gerente de projeto no
planejamento das iteragGes e proporcionard, ao arquiteto de software, identificar os

casos de uso mais significativos para a arquitetura.

XP
A equipe de desenvolvimento determina os valores de custo e esforgo necessarios

para cada user story escrita pelo cliente. O cliente define a prioridade dos requisitos,
através das user stories e planos de release e, com ajuda da equipe de
desenvolvimento, riscos e custos envolvidos para cada iteragdo. Com a entrega
fregiiente do produto de software de forma tangivel, o cliente gerencia os requisitos e
direciona o plano das iteragdes conforme suas necessidades e perspectivas. Em XP
nfo existe uma preocupagio com definicio de uma arquitetura para o sistema nas

fases iniciais, apenas considera como um fendmeno emergente 4 medida que as

iteragcOes acontecem.

106

4.4.3.5 Refinamento da Defini¢iio do Sistema

RUP
O propésito desta atividade & refinar os requisitos, descrevendo o fluxo de casos de

uso em detalhes, expandir as especificagdes suplementares, desenvolver uma
Especificagdo de Requisitos de Software e modelar e prototipar a interface do
usudrio.

O refinamento da defini¢do do sistema se inicia com o detalhamento dos casos de
uso, com uma descri¢ao breve dos atores, e 0 entendimento do escopo do projeto,
refletindo 2 repriorizacdo das funcionalidades no escopo que se acredita ser vidvel de
ser atingido em termos de or¢amento e datas.

O resultado desta atividade € um entendimento mais profundo das fungdes do
sisterna, expresso em casos de uso detalhados, especificacdo suplementar revisada e
detalhada, além dos elementos de interface de usuério. Uma Especificag¢o de
Requisitos de Software pode ser desenvolvida, se necessdrio, como complementacéo

aos casos de uso detalhados e Especificagdes Suplementares.

XP
Nao possui um documento formal de especificag@o de requisitos; a sua necessidade

deve partir do cliente que deve descrevé-lo como uma user story que fara parte do
projeto. O refinamento dos requisitos é resultado da entrega rdpida e freqiiente de
software funcional para a equipe do cliente que, a partir de uma referéncia tangivel,
escreve novas user stories para as préximas iteragfes. A prototipagio € a modelagem
da interface do usudrio ndo sdo atividades especificas em XP, mas pode ser realizada
como um resultado que emerge do processo iterativo e incremental. As prototipagdes
sdo referidas em XP como ferramentas de avaliac@o de riscos, para estimar a
velocidade da equipe de desenvolvimento, para explorar alternativas de arquiteturas e

para refinar uma determinada funcionalidade (Booch, 1998).

RUP
Torna-se importante trabalhar em conjunto com os usudrios e potenciais usudrios do

sistema quando da modelagem e prototipacio da interface de usudrio. Isto pode ser

107

usado para direcionar a usabilidade do sistema, para ajudar a emergir requisitos néo
descobertos e para refinar a defini¢do de requisitos.

Os resultados destes refinamentos da defini¢@o do sistema podem ser submetidos &
atividade de geréncia de escopo.Uma vez que se sabe mais sobre o sistema, as
prioridades tendem a mudar.

O refinamento da defini¢io do sistema deve considerar duas questdes chaves: o
desenvolvimento de descrigbes mais detalhadas da defini¢do do sistemae a

verificacfo se o sistema estd de acordo com as expectativas e necessidades que 0s

stakeholders tenham descrito.

XP
A entrega constante de software funcional e o cliente como membro da equipe de

projeto favorecem o refinamento dos requisitos do sistema. A idéia de exploragdo ¢
aprendizado com os requisitos caminham juntas em um projeto de XP. Conforme as
iteragdes acontecem, novos requisitos emergem e mudangas sdo manifestadas. Essas
alteragdes séio incorporadas nas iteracdes futuras nos planos de release ¢ iteragdo. “A
equipe de desenvolvimento precisa entregar constantemente e de forma iterativa
versdes do sistema para o cliente. O plano de release é utilizado para descobrir
pequenas unidades de funcdes que facam um bom sentido para o negdcio e possam
ser integradas ao ambiente dos usudrios nas fases iniciais do projeto.” (Beck, 1999).
A realimentacfio constante do cliente, através dos testes e dos releases, fornece a
verificagdo das expectativas do cliente ¢ do software entregue, que representam dois
dos valore do XP — Comunicagdo e Realimentagio. “Com o cliente posicionado

desta maneira, a necessidade de muitos documentos intermedidrios pode ser

reduzida...” (Smith, 2001).

4.4.3.6 Geréncia das Mudancas de Requisitos

RUP

A mudanca de alguns requisitos ¢ desejdvel, e pode significar que a equipe esta
engajada com os stakeholders. O inimigo ndo é a mudanca, mas sim a nfo geréncia.

A capacidade de acomodar as mudangas de requisitos € uma medida da sensibilidade

108

e flexibilidade operacional que a equipe do projeto e os stakeholders possuem € é um
dos atributos que contribuem para o sucesso do projeto (Ericsson, 2002).

O propésito desta atividade é avaliar formalmente a mudanga de requisitos solicitada
e determinar o seu impacto nos requisitos existentes, além de estruturar os casos de
uso, configurar apropriados atributos de requisitos e verificar formalmente se o
resultado da disciplina de requisitos estd em conformidade com o ponto de vista do
cliente sobre o sistema.

As mudangas nos requisitos afetam naturalmente os modelos produzidos na
disciplina de Anélise e Projeto, os modelos de teste criado na disciplina de Teste e o
material de suporte ao usudrio da disciplina de implementagfio. A relagio de
rastreabilidade identificada na geréncia de dependéncia identifica as relagdes entre 0s
requisitos € os outros artefatos. Estes relacionamentos sfio chaves para o impacto da
mudancga de requisitos.

Outro conceito importante é a trajetéria histérica dos requisitos. Pela captura natural

e racional das mudangas de requisitos, os revisores recebem a informacfio necesséria

para responder 2 mudancga requisitada.

XP
As mudangas s3o bem vindas em Extreme Programming, pois elas caracterizam que

o processo de aprendizado da equipe e a emergéncia dos requisitos estao

acontecendo. A mudanga de requisitos nao é encarada como um erro, mas Como um

avango do produto em diregfio da expectativa do cliente.

A mudanga é pedida pelo cliente, através de uma nova user story que, por sua vez, €
estimada em termos de esforco pela equipe de desenvolvimento e priorizada pelo
cliente para o planejamento das préximas iteracdes (Astels, 2002).

O principio do cliente on-site proporciona o seu engajamento na colaboragdo com 0
projeto. Mudangas que acarretam grandes esforgos que possam inviabilizar a iteragéo

sio analisadas em conjunto € negociadas entre as equipes.

4.5 Aderéncia do Extreme Programming ao Capability Maturity Model (CMM)

O SW-CMM é um modelo de avaliagio de maturidade de desenvolvimento de

software amplamente aceito na comunidade profissional. Nesta se¢fio € feita uma

109

apresentagio resumida do modelo SW-CMM como um todo, com um detalhamento

da KPA (Key Area Process) da Geréncia de Requisitos, para entdo discutir a

aderéncia do método Extreme Programming a este modelo.

4.5.1 O modelo SW-CMM

Desenvolvido pelo Instituto de Engenharia de Software da Universidade de Carnegie

Mellon, como um modelo para a avaliagio e melhoria da maturidade organizacional

para construgdo de software, 0 SW-CMM tem sido amplamente adotado pela

comunidade de software (Paulk, 2001).

No CMM, foram estabelecidos os niveis de maturidade que a organizagio pode

alcangar para desenvolver software, que sdo (Maldonado, 2001):

Nivel 1 Inicial : O desempenho no desenvolvimento de software de qualidade

depende diretamente da competéncia das pessoas.

Nivel 2 Repetivel: Os métodos de geréncia de software sio documentados e

acompanhados. Politicas organizacionais orientam os projetos estabelecendo

processos de geréncia.

Nivel 3 Definido: Existe um processo de software definido na empresa, com a

preocupacio de ser um processo padronizado que é especializado para cada

projeto de software.

Nivel 4 Gerenciado: O processo é medido e gerenciado quantitativamente,

com a possibilidade de previsiio de desempenho dentro dos limites

quantificados.

Nivel 5 Otimizado: E focado na melhoria continua do processo, onde a
mudanca de tecnologia e as mudangas no préprio processo sio gerenciadas de

forma a n#io causar impacto na qualidade do produto final.

110

Para cada nivel do CMM, com a excegao do nivel 1, existem conjuntos de metas e

objetivos que devem ser satisfeitos para que a organiza¢do possa atingir um

determinado nivel. Esses objetivos e metas podem ser atingidos através da

implantagiio de KPAs (Key Process Areas) ou dreas chave de processo (Crissis,

1993).

A seguinte tabela sumariza as KPAs por nivel de maturidade do CMM (Paulk, 2001).

Tabela 5 - SW-CMM - niveis de maturidade

Nivel

Foco

Key Process Areas (KPAs)

5: Otimizado

Melhoria continua do Processo.

Prevengio de Defeito.
Gerenciamento da mudanga
tecnoldgica.
Gerenciamento da mudanga

no processo.

4: Gerenciado

Qualidades dos Processos e Produtos.

Gerenciamento quantitativo
do processo.
Gerenciamento da

qualidade de software.

3: Definido

Processos de Engenharia ¢ Suporte

Organizacional.

Foco no processo da
organizagio.

Defini¢éo do processo da
organizacZo.

Programa de Treinamento.
Gerenciamento integrado
de software.

Engenharia de produto de
software.

Coordenagao intergrupos.

Revisodes.

2: Repetivel

Gerenciamento de Projeto.

Gerencia de Requisitos

111

Planejamento do Projeto de
Software.
Acompanhamento de
Projeto de Software.
Gerenciamento de
subcontrato de software.
Garantia na qualidade de
software.

Gerenciamento da

configuracdo de software.

1: Inicial Sem processo.

4.5.2 XP e SW-CMM nivel dois

A avaliagdo do XP é feita em relag@o & KPA — Geréncia de Requisitos, pertencente

a0 nivel 2 do modelo SW-CMM.

O propésito da Geréncia de Requisitos € estabelecer e manter um acordo comum

entre o cliente e a equipe de desenvolvimento, em relagéo as necessidades do cliente

que direcionario o projeto de software.

Esse acordo é referido como os requisitos do sistema alocado para o software,
cobrindo os requisitos técnicos e ndo técnicos do projeto de software, e forma a base

para estimativa, planejamento e desempenho, para as atividades no ciclo de vida do

projeto de software (Bush, 1993).

A tabela 6 exibe as priticas necessdrias para satisfazer a KPA Geréncia de Requisitos

no Modelo SW-CMM (Bush, 1993).

Tabela 6 - KPA. Geréncia de Requisitos Nivel Dois
Metas 1) Os requisitos do sistema sdo controlados para estabelecer uma

112

2)

baseline para o gerenciamento e a engenharia de software.

Planos de Software, Produtos e Atividades sdo consistidos

com os requisitos de sistema.

Compromisso

Deve cumprir o compromisso de uma politica organizacional

documentada para a geréncia dos requisitos de software.

Capacidades

1)

2)
3)

4)

Para cada projeto, pela andlise dos requisitos, as
responsabilidades s#io atribuidas, alocando-as para hardware,
software e outros componentes de sistema.

Os requisitos sdo documentados.

Recursos adequados sdo providenciados para a geréncia dos
requisitos.

Membros da equipe de Engenharia de Software e outras
equipes relacionadas com software sdo treinadas para suas

atividades de geréncia de requisitos.

Atividades

1)

2)

3)

A equipe de engenharia de software revisa os requisitos antes
gue eles sejam incorporados ac projeto de software.

A equipe de engenharia de software utiliza os requisitos como
base para o plano de software, produtos funcionais e
atividades.

Mudangas de requisitos sfio revisadas e incorporadas ao

projeto de software.

Meétrica

1)

As métricas sfo criadas e utilizadas para determinar o estado

das atividades, de modo a gerenciar os requisitos alocados.

Verificagdes

1)

2)

3)

As atividades de geréncia de requisitos so revisadas com o
gerente sénior periodicamente.

As atividades de geréncia de requisitos so revisadas com o
gerente de projeto periodicamente e na ocorréncia de eventos.
A equipe de qualidade de software revisa e/ou audita as
atividades e produtos funcionais para geréncia de requisitos e

informag@do dos resultados.

113

Segundo Pauik (2001), o XP satisfaz o enfoque da KPA de nivel 2, Geréncia de

Requisitos do modelo SW-CMM, considerando as condicionantes de um método

voltado para equipes pequenas.

Na andlise da aderéncia do XP 4 KPA de Geréncia de Requisitos no Modelo SW-
CMM, Ford (2002) considera como pontos fortes:

O escopo das préximas iteragGes € determinado rapidamente, combinando as
prioridades do negécio e as estimativas técnicas. O cliente decide o escopo,
prioridade e data, através do ponto de vista do negécio, enquanto a equipe
técnica estima e verifica o progresso.

Ao final de cada iterag8o, as equipes técnica e do cliente reavaliam os
resultados da iteragfio e promovem as corre¢des dos requisitos para a proxima
iteracdo.

As iteragdes curtas facilitam a realimentagio constante do cliente,
promovendo a consisténcia das atividades, produtos e planos de software com
08 requisitos do sistema.

Os recursos sdo controlados pela equipe do cliente através do papel do
patrocinador que garante que o projeto possua as pessoas, 0s equipamentos €
os financiamentos para atingir seus objetivos,

Os requisitos emergem conforme as iteragdes do processo sfo realizadas.
Requisitos s@o descobertos através das iteragdes curtas e revisados pela
entrega freqiiente de software funcional. Os requisitos emergentes sdo
transformados em user stories, estimados pela equipe de desenvolvimento e

priorizados pela equipe do cliente.

A necessidade de uma documentac@o formal escrita em SW-CMM € importante e
estd presente na Capacidade niimero dois — Os requisitos sdo documentados. As user
stories isoladas ndo podem ser consideradas como uma documentagdo, pois como
Beck (1999) define, elas constituem um compromisso para uma conversagio entre

cliente e desenvolvedor, possuindo mais valor como ferramenta de geréncia,

114

estimativas e gerador de tarefas para os programadores. O XP de forma nativa néo é
capaz de satisfazer essa habilidade necessaria & KPA; a documentag#o formal devera
ser implementada como uma user story e fard parte do ciclo de desenvolvimento
iterativo. No entanto, Paulk (2001) considera que, pelas condicionantes do tamanho
da equipe ¢ cliente como parte integrante da equipe de desenvolvimento, a
documentagdo de requisitos, sob o ponto de vista de resultado, pode ser alcangado
pela combinagfo das user stories, cliente on-site e entrega continua de software

podendo satisfazer, por inferéncia, esse ponto da KPA.

Ford (2002) aponta, como fraqueza, o fato de XP nédo apresentar um treinamento
formal de geréncia de requisitos, assumindo que as equipes do cliente e de
desenvolvimento possuem a experiéncia necessdria para cumprir esta capacidade. No
entanto, Jeffries (2001a) afirma que o treinamento estd baseado nas préticas do XP,
pois um dos principios do XP € ensinar aprendendo (Beck, 1999). “Se vocé nédo
incentivar as pessoas a aprenderem, elas resistirdo ao aprendizado quando ele for
realmente necessdrio”.

Outra fraqueza apontada por Ford (2002) ¢ a falta de métricas e medidas sobre o
estado dos requisitos para a geréncia de requisitos. No entanto, segundo Astels
(2002), o estado dos requisitos € controlado pela entrega freqiiente de software
funcional ao cliente; com o software operacional em mios, o cliente pode verificar,
de forma tangivel, quais requisitos foram cumpridos.

De forma geral, Paulk (2001) afirma que “Xp possui boas prdticas de engenharia
que podem trabalhar bem com CMM e outros métodos estruturados. O importante é

considerar cuidadosamente as prdticas de XP e implementd-las no ambiente certo.”

115

5 CONCLUSAO

O capitulo final discorre sobre as principais conclusSes e as contribuices relativas

aos capitulos apresentados e as sugestdes para complementar a pesquisa e

impulsionar novos trabalhos.

5.1 Conclusdes e Contribuicdes

A principal contribuigio, com relagdo aos tGpicos apresentados, € ter explicitado, sob
o ponto de vista de conceito, as atividades de Engenharia de Requisitos em dois tipos
de processos de filosofias diferentes: um processo direcionado pelo planejamento
que busca a previsibilidade dos requisitos (RUP) e um processo direcionado pela

adaptabilidade que busca se acomodar & emergéncia dos requisitos em um projeto de

software (XP).

Uma conclusdo é que considerar on desconsiderar o ponto de vista de um ou outro
processo € altamente arriscado, se ndo se levar em conta uma varidvel de vital
importincia: o ambiente e o dominio onde a disciplina de Engenharia de Requisitos
estara imersa. Aplicar um determinado processo, por melhor que ¢le seja estruturado,

em um ambiente desfavorédvel € o primeiro passo para o fracasso do projeto.

O reconhecimento das caracteristicas dos dois pontos de vista ¢ a aplicacfio do
processo correto nos projetos devem ser enfatizados na aplicagio da Engenharia de

Requisitos, ressaltando a sua capacidade de se moldar de forma efetiva e eficiente

aos dominios do negdcio.

Pode-se obter vantagem destas abordagens, se souber dosar ¢ integrar, de forma
harmoniosa, os dois pontos de vista buscando uma sinergia, complementando as

falhas de um com as qualidades do outro e vice-versa, e obtendo requisitos de

qualidade para o projeto.

116

Sob essa perspectiva, o Rational Unified Process possui mais profundidade para
acomodar um processo mais formal de Engenharia de Requisitos e maior capacidade
de talhar os seus processos, conforme o ambiente de negdcios. Possui mecanismos

consistentes para conseguir a mobilidade entre o processo direcionado pela

previsibilidade e adaptabilidade dos requisitos.

Em termos de aplicabilidade do processo e obten¢@io de resultados tangiveis, os
Métodos Ageis por meio de seus valores e principios praticados somam
contribui¢des importantes & Engenharia de Requisitos. Estes métodos néo devem ser
considerados como inovagdes ou descoberta de alguma espécie de “bala de prata”,
mas apenas como um retorno sauddvel a alguns principios basicos do
desenvolvimento de software: o cliente como a chave para o sucesso do projeto, o
processo evoluciondrio para diminuicio de riscos e conceitos da disciplina de
Engenharia de Requisitos, utilizados por todo o ciclo de vida do projeto. Principios
esses, que sio adotados de forma vigorosa pelos Métodos Ageis, a fim de

proporcionar rapida resposta a um meio onde a velocidade e instabilidade de

requisitos s3o caracteristicos.

Outra conclusfio importante é maneira pela qual os Métodos Ageis encaram o
elemento humano em seu processo. O tratamento dos requisitos, nos métodos ageis,
busca uma engenharia social entre seus participantes e interessados, ressaltando a
importéncia dos requisitos, através da integracdo, comunicagio e colaboracdo
intensiva entre os envolvidos, engajando-0s no alcance de seus objetivos e

valorizando-os em um processo de Engenharia de Requisitos.

Considerar o elemento humano como apenas um recurso em um projeto de
desenvolvimento de software, desconsiderando-o ou relegando, a um segundo plano,
a sua individualidade, criatividade ¢ inteligéncia, deve ser considerado como um
risco a ser avaliado no projeto. A tentativa de utilizar um processo baseado em
algumas herangas de disciplinas mais antigas da Engenharia que desconsideram o

fator humano, em um ambiente onde a interagio ¢ a colaborago das pessoas, como

117

fontes geradoras e consumidoras de requisitos, € um dos fatores preponderantes para

alcangar um produto correto e de qualidade, merece uma reavaliagio.

Finalmente, a Engenharia de Requisitos ndo deve ser apenas encarada, de forma
minimalista, como uma disciplina burocratizante e rigida, como € vista por alguns
agilistas, pois informalmente seus valores ¢ principios estdo presentes em todo o
ciclo de vida dos Métodos Ageis. Deve ser encarada como a arte de aplicar os

conhecimentos cientificos e empiricos na criagfio de processos efetivos e consistentes

a0 ambiente em que esta inserido.

5.2 Continuidade da Pesquisa

Em relagiio 4 Engenharia de Requisitos em métodos dgeis, existe a necessidade de
uma discussdo mais detalhada sobre alguns pontos, em funcdo de controvérsias e

falta de melhor esclarecimento. Os principais pontos considerados sdo:

- Selecido do cliente nos métodos 4geis: Quando os representantes sdo varios e
dispersos geograficamente, existe a dificuldade da acomodagio de varios
pontos de vista sobre 0 mesmo requisito. Para esses pontos os métodos dgeis

s#o relativamente vagos e imprecisos quanto ao seu processo.

Requisitos ndo funcionais: nfo foi identificada nenhuma referéncia direta a
captacdo e a geréncia de requisitos ndo funcionais em Métodos Ageis, sendo

tratados da mesma forma que o0s requisitos funcionais.

Contrato de desenvolvimento: E importante discutir sobre as caracteristicas
de um contrato para desenvolvimento agil, uma vez que pouca documentacéo
¢ gerada ¢ os objetivos do sistema, seus requisitos e seus incrementos vao

sendo definidos & medida que o entendimento sobre o sistema vai

aumentando.

- Escalabilidade: Os Métodos Ageis ¢ os seus processos de requisitos séo

condicionados para pequenas equipes, normalmente entre 10 e 12 pessoas.

118

Existem referéncias de suas utilizagdo para equipes de até 200 pessoas, mas
pouco s¢ comenta em relagio ao detalhamento de como essa escalabilidade
foi conseguida, mantendo as caracteristicas de sua agilidade, principalmente

em termos de comunicacgéo e colaboragéio (Eberlein, 2002).

Esses pontos n#o devem ser considerados como uma critica aos Métodos Ageis, mas
deve-se investir um esforco de pesquisa no entendimento de sua reacgdo a esses

eventos, seu comportamento ¢ visualizacdo de seus limites e condicionantes.

119

REFERENCIAS BIBLIOGRAFICAS

(Ambler,02)

(Astels,02)

(Beck el al.,01)

(Beck,99)

(Beedle, 01)

(Boehm,00)

(Boehm,02)

(Boehm,81)

(Booch,98)

(Booch,99)

Ambler, S.W., Agile Requirements Modeling, The Oficial Agile
Modeling Site.

Disponivel em www.agilemodeling.com>. Acesso em 25/05/02
Astels,D.; Miller, G.; Novak, M., A Practical Guide to eXtreme
Programming, 1.ed., Prentice Hall, 2002

Beck, K.;Beedle, M.;Cockburn, A.;Cunningham, W.;Fowler,
M.;Grenning, J.;Highsmith, J.; Hunt, A.;Jeffries, R.;Kem, J.;
Marick, B.; Martin, R.C.; Mellor, S.; Schwaber, K.;Sutherland, J.;
Thomas, D.; Van Bennekum, A., Manifesto for Agile Software
Development.

Disponivel em <www.agilealliance.org>. 08/06/02.

Beck, K., eXtreme Programming Explained: Embrace
Change, 1.ed, Addison-Wesley, 1999

Beedle, M.; Schuwaber, K., Agile Software Development with
Scrum. Jeff Sutherland s Object Technology Web Site.
Disponivel em <www.jeffsutherland.com/scrum/index.html>.
Acesso em 13/10/02

Boehm, B.W., Spiral Development: Experience, Principles and
Refinements, Spiral Development Workshop 2000, Software
Engineering Institute - Carnegie Mellon University -
CMUY/SEI-2000-SR-008, 2000

Boehm, B.W.; DeMarco,T., The Agile Methods Fray, IEEE
Computer Vol 35, n° 6 - June 2002

Boehm, B.W., Software Engineering Economics, Prentice Hall,
1981

Booch, G.; Newkirk, J.; Martin, R.C., Object Oriented Analysis
and Design with Aplications, 2.ed.,Addison-Wesley,1998

Booch, G., Jacobson, L., Rumbaugh, J., The unified software
development process, Addison-Wesley, 1999.

120

(Bush,93) Bush, M.; Crissis, M.B.; Garcia, S.M., Paulk, M.C., Webber,
C.V., Key Practices of the Capability Maturity Modelo for
Software V.1.1 - CMU/SEI-93-TR-025 -1993.
Disponivel em <www.sei.cmu.edu>. Acesso em 17/11/02
{Charette,02) Charette, R., The Decision is in: Agile Versus Heavy
Methodologies, Cutter Consortium: Sample Issues, vol.2, n°

19, 2002.
Disponivel em <www.cutter.com/freestuff/epmu0119.html>.

Acesso em 15/09/02

(Clavadetscher,98) Clavadetscher, C., User Involvement: Key to Success, IEEE
Software, Vol. 15, n® 2, March/April 1998

(Coad,99) Coad, P.; De Luca, JI.; Lefebvre, E., Java Modeling in Color with
UML, Agile Alliance. Disponivel
<www.agilealliance.org/articles>. Acesso em 06/10/02

(Cockburn, 01a) Cockburn, A., Agile Software Development, 1.ed, Addison-
Wesley, 2001

(Cockburn,01) Cockburmn, A.; Jim Highsmith, Agile Software Development:
The business of innovation, IEEE Computer Magazine Vol.34,
n°9- Septérnber 2001

(Crissis,93) Crissis, M.B.;Curtis, B.; Paulk, M.C.; Weber C.V, Capability
Maturity Model for Software V.1.1 - CMU/SEI-93-TR-024 -
1993,
Disponivel em <www.sei.cmu.edu>. Acesso em 17/11/02

(Dorfman,97) Dorfman, M.;Thayer, R.H., Software Requirements
Engineering, IEEE Computer Society Press, 1997

(DSDM,01) DSDM Consortium, Introducing DSDM into na Organization,

DSDM Consortium, 2001.
Disponivel em <www.dsdm.org>. Acesso em 03/10/02

(Duncan,01)

(Easton,02)

(Eberlein,02)

(Ericsson,02)

(Ford,02)

(Fowler, 02)

(Fowler,02a}

121

Duncan, R., The Quality of Requirements in Extreme
Programming, Institute for Signal and Information Processing
- Mississipe State University.

Disponivel em
<www.isip.msstate.cdu/publications/journals/crosstalk/200 1/

extremeprogramming/crosstalk_final.pdf>. Acesso em 14/09/02
Easton, Z.; Stapleton, J.; Tuffs, J.; West, D., Inter-operability of
DSDM with the Rational Unified Process, DSDM Consortium,
2002.

Disponivel em <www.dsdm.org>. Acesso em 05/10/02
Eberlein, A.; Leite, J.C.S.P., Agile Requirements Definition: A
View from Requirements Engineering, International Workshop
on Time Constrained Requirements Engineering 2002.
Disponivel em <http://www-di.inf.puc-rio.br/~julio/tcre-
site/p4.pdf>. Acesso em 19/10/02

Ericsson, M.; Oberg, R.; Probasco, L., Applying Requirements
Management with Use Cases, Rational Software Corporation
White Paper TP505 2002.

Disponivel em <www.rational.com>. Acesso em 28/07/02
Ford, S.; Man, J.; Zhou, Q., Is XP at CMM Maturity Level
Two?, University of Calgary, Updated April 2002.Disponivel
em <www.enel.ucalgary.ca/~zhoug/XPCMM623.html. Acesso
em 16/11/02

Fowler, M., The New Methodology - update June 2002.
Disponive em <www.martinfowler.com/articles/
newMethodology.html>. Acesso em 21/07/02

Highsmith, J., Does Agility Work?, Software Development
Magazine - June 2002. Disponivel em

<www.sdmagazine.com/print/documentID=25469>. Acesso em

03/08/02

(Goetz,02)

(Highsmith,00)

(Highsmith,01)

(Holanda,99)

(Janoff,00)

(Jeffries,01)

(Jeffries,01a)

(Jones,98)

(Kotonya,97)

(Maldonado,01)

122

Goetz, R., How Agile Process Can Help in Time-Constrained
Requirements Engineering, International Workshop on Time
Constrained Requirements Engineering 2002.

Disponivel em <http://www-di.inf.puc-rio.bt/~julio/tcre-
site/p8.pdf>. Acesso em 14/09/02

Highsmith, J.; Orr, K.T., Adaptive Software Development : A
collaborative aproach to managing complex systems, Dorset
House, 2000

Fowler, M.; Highsmith, J., The Agile Manifesto, Software
Development Magazine - August 2001. Disponivel em
<www.sdmagazine.com/print/documentID=11649>. Acesso em
21/67/02

Holanda, A.B., Novo Aurélio Século XXI: O Dicionario da
Lingua Portuguesa, 3.ed., Nova Fronteira, 1999

Janoff, N.S.; Rising, L., The Scrum software development
process for small teams, IEEE Software, Vol. 17, n° 4 - Jul/Ago
2000

Jeffries, R., Essential XP: Documentation, Extreme
Programming Resource, update November 2001. Disponivel em
<www.xprogramming.com/xpmag/expDocumentationInXP.htm>.
Acesso em 29/09/02

Jeffries, R., What is Extreme Programming?, Extreme
Programming Resource, update August 2001. Disponivel em
<www.xprogramming.com/xpmag/expDocumentationInXP.htm>.
Acesso em 29/09/02

Jones, C., Estimating Software Costs, New York,McGraw Hill,
1998

Kotonya, G.;Sommervilie, 1., Requirements Engineering, Jonh
Wiley & Sons Ltd, 1997

Maldonado, J.C.; Rocha, A.R.C.,; Weber, K.C., Qualidade de
Software, Sdo Paulo, Prentice Hall, 2001.

(Paulk,01)

(Pollice,01)

{(Pressman,01)

(Rational,01)

(Rising,02)

(Schwaber,01)

(Schwaber,02)

(Smith,01)

(Tomayko,02)

(Wake,01)

123

Paulk, M.C., Extreme Programming from a CMM Perspective,
IEEE Software, Vol 18, n® 6, November/December 2001

Pollice, G., Using the Rational Unified Process for Small
Projects: Expanding Upon eXtreme Programming, Rational
Software Corporation White Paper TP183 2001. Disponivel em
<www.rational.com>. Acesso em 13/10//02

Pressman, R.S., Software Engineering: a practitioner's
approach, 5th.Ed., McGraw-Hill, 2001

Rational Rup Model 2001A.04.00.1B, Rational Software
Corporation, 2001

Rising, L., Agile Meetings, The Software Testing and Quality
Engineering Magazine May/June 2002. Disponivel em
<members.cox.net/risingl/articles/>. Acesso em 15/09/02
Schwaber, K., Get Ready for Scrum. Scrum Development
Process Web Site.Disponivel em <www.controlchaos.com>.
Acesso em 03/11/02

Schwaber, K., The Impact of Agile Process on Requirements
Engineering, Agile Alliance - September 2002.

Disponivel em <www.agilealliance.org/articles>. Acesso em
5/10/2002

Smith, J., A Comparision of RUP and XP, Rational Software
Corporation White Paper TP167 2001. Disponivel em
<www.rational.com>. Acesso em 01/06/02

Tomayko, I.E., Engineering of Unstable Requirements Using
Agile Methods, International Workshop on Time Constrained
Requirements Engineering 2002,

Disponivel em
<http://www-di.inf.puc-rio.br/~julio/tcre-site/p 1.pdf>. Acesso em

22/09/02
Wake, W.C., Extreme Programmin Explored, !.ed., Addison-

Wesley,2001

(Wells, 02)

(Wiegers,99)

(Young,01)

124

Wells, D., Extreme Programming: A gentle introduction,

update August 2002.

Disponivel em <www.extremeprogramming.org>. Acesso em

27/10/02
Karl E. Wiegers, Software Requirements, Microsoft Press, 1999

Young, R.R., Effective requirements practices, Addison-

Wesley, 2001

